Inference of XML Integrity Constraints

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 186)


In this paper we expand upon the previous efforts to infer schema information from existing XML documents. We focus on inference of integrity constraints, more specifically ID/IDREF/IDREFS attributes in DTD. Building on the research by Barbosa and Mendelzon (2003) we introduce a heuristic approach to the problem of finding an optimal ID set. The approach is evaluated and tuned in a wide range of experiments.


Greedy Algorithm Attribute Mapping Integrity Constraint Incumbent Solution Construction Heuristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahonen, H.: Generating Grammars for Structured Documents Using Grammatical Inference Methods. Ph.D. thesis, Department of Computer Science, University of Helsinki. Series of Publications A, Report A-1996-4 (1996)Google Scholar
  2. 2.
    Barbosa, D., Mendelzon, A.: Finding ID Attributes in XML Documents. In: Bellahsène, Z., Chaudhri, A.B., Rahm, E., Rys, M., Unland, R. (eds.) XSym 2003. LNCS, vol. 2824, pp. 180–194. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Bex, G.J., Neven, F., Vansummeren, S.: SchemaScope: a System for Inferring and Cleaning XML Schemas. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, pp. 1259–1262. ACM, New York (2008)CrossRefGoogle Scholar
  4. 4.
    Bray, T., Paoli, J., Maler, E., Yergeau, F., Sperberg-McQueen, C.M.: Extensible Markup Language (XML) 1.0, 5th edn. W3C recommendation, W3C (2008)Google Scholar
  5. 5.
    Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.C.: Keys for XML. In: Proceedings of the 10th International Conference on World Wide Web, WWW 2001, pp. 201–210. ACM, New York (2001)CrossRefGoogle Scholar
  6. 6.
    Dantzig, G.: Linear Programming and Extensions. Landmarks in Physics and Mathematics. Princeton University Press (1998)Google Scholar
  7. 7.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Books. MIT Press (2004)Google Scholar
  8. 8.
    Fajt, S.: Mining XML Integrity Constraints. Master’s thesis, Charles University in Prague (2010),
  9. 9.
    Fomin, F.V., Grandoni, F., Kratsch, D.: A Measure & Conquer Approach for the Analysis of Exact Algorithms. J. ACM 56, 25:1–25:32 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell (1997)zbMATHCrossRefGoogle Scholar
  11. 11.
    Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. In: Artificial Intelligence. Addison-Wesley Pub. Co. (1989)Google Scholar
  12. 12.
    Klempa, M., Mikula, M., Smetana, R., Švirec, M., Vitásek, M.: jInfer Architecture (2011),
  13. 13.
    Klempa, M., Mikula, M., Smetana, R., Švirec, M., Vitásek, M.: jInfer: Java Framework for XML Schema Inference (2011),
  14. 14.
    Paschos, V.T.: A survey of Approximately Optimal Solutions to Some Covering and Packing Problems. ACM Comput. Surv. 29, 171–209 (1997)CrossRefGoogle Scholar
  15. 15.
    Robson, J.: Algorithms for Maximum Independent Sets. Journal of Algorithms 7(3), 425–440 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Vitásek, M.: Inference of XML Integrity Constraints. Master’s thesis, Charles University in Prague (2012),
  17. 17.
    Vošta, O., Mlýnková, I., Pokorný, J.: Even an Ant Can Create an XSD. In: Haritsa, J.R., Kotagiri, R., Pudi, V. (eds.) DASFAA 2008. LNCS, vol. 4947, pp. 35–50. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Software EngineeringCharles University in PraguePragueCzech Republic

Personalised recommendations