Skip to main content

Pre-treatment of Malaysian Agricultural Wastes Toward Biofuel Production

  • Chapter
  • First Online:
Pretreatment Techniques for Biofuels and Biorefineries

Abstract

Various renewable energy technologies are under considerable interest due to the projected depletion of our primary sources of energy and global warming associated with their utilizations. One of the alternatives under focus is renewable fuels produced from agricultural wastes. Malaysia, being one of the largest producers of palm oil, generates abundant agricultural wastes such as fibers, shells, fronds, and trunks with the potential to be converted to biofuels. However, prior to conversion of these materials to useful products, pre-treatment of biomass is essential as it influences the energy utilization in the conversion process and feedstock quality. This chapter focuses on pre-treatment technology of palm-based agriculture waste prior to conversion to solid, liquid, and gas fuel. Pre-treatment methods can be classified into physical, thermal, biological, and chemicals or any combination of these methods. Selecting the most suitable pre-treatment method could be very challenging due to complexities of biomass properties. Physical treatment involves grinding and sieving of biomass into various particle sizes whereas thermal treatment consists of pyrolysis and torrefaction processes. Additionally biological and chemical treatment using enzymes and chemicals to derive lignin from biomass are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Potential Contribution of Bioenergy to the Works Future Energy Demand. IEA Bioenergy, EXCO 2007:02

    Google Scholar 

  2. Sumathi S, Chai SP, Mohamed AR (2008) Utilization of oil palm as a source renewable energy in malaysia. Renewable Sustainable Energy Rev 12:2404–2421

    Article  Google Scholar 

  3. Bridgeman TG, Jones JM, Shield I, Williams PT (2007) Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87:844–856

    Article  Google Scholar 

  4. Prins MJ, Ptasinki KJ, Frans JJ, Janssen G (2006) More efficient biomass gasification via torrefaction. Energy 31:3458–3470

    Article  Google Scholar 

  5. Rajvanshi AK (1986) Biomass gasification. In: Goswami DY (ed) Alternative energy in agriculture, vol. II. CRC Press, Boca Raton, pp 83–102

    Google Scholar 

  6. McKendry P (2002) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83:55–63

    Article  Google Scholar 

  7. Azizan MT, Yusup S, Laziz FD Md, Ahmad MM (2009) Synthesis of bio-oil from oil palm’s empty fruit bunch via pyrolysis. In: 3rd WSEAS international conference on renewable energy source (RES ’09), University of Cambridge, United Kingdom, 24–26 Feb 2009

    Google Scholar 

  8. Shaddix CR, Huey SP (1997) Combustion characteristics of fast pyrolysis oils derived from hybrid poplar. In: Bridgwater AV, Boocock DGB (eds) Developments in thermochemical biomass conversion, Blackie Academic & Professional, London, pp 465–480

    Google Scholar 

  9. Gust S (1997) Combustion experiences of flash pyrolysis fuel in intermediate size boilers. In: Bridgwater AV, Boocock DGB (eds) Developments in thermochemical biomass conversion, Blackie Academic & Professional, London, pp 481–488

    Google Scholar 

  10. Sipilä K, Oasmaa A, Arpiainen V, Westerholm M, Solantausta Y, Ahnger A, Gros S, Nyrönen T, Gust S (1996) Pyrolysis oils for power plants and boilers. In: Proceedingsof the 9th European bioenergy conference, Copenhagen, 24–27 June

    Google Scholar 

  11. Andrews RG, Fuleki D, Zukowski S, Patnaik PC (1997) Results of industrial gas turbine tests using a biomass derived fuel. In: Overend RP, Chornet E (eds) Proceedings of the 3rd biomass conference of the Americas, Elsevier Science Limited, pp 425–436

    Google Scholar 

  12. Soltes EJ, Lin J-CK (1984) Hydroprocessing of biomass tars for liquid engine fuels. In: Tillman DA, Jahn EC (eds) Progress in biomass conversion, Academic Press, New York, pp 1–69

    Google Scholar 

  13. Jay DC, Sipilä KH, Rantanen OA, Nylund N-O (1995) Wood pyrolysis oil for diesel engines. In: international combustion engine division of the ASME; 1995 fall technical conference, Sept 24–27

    Google Scholar 

  14. Aubin H, Roy C (1980) Study on corrosiveness of wood pyrolysis oils. Fuel Sci Technol. Int 8:77–86

    Article  Google Scholar 

  15. Chang VS, Holtzapple MT (2000) Fundamental factors affecting enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–37

    Article  Google Scholar 

  16. Susmel P, Stefanon B (1993) Aspects of lignin degradation by rumen microorganisms. J Biotechnol 30:141–148

    Article  Google Scholar 

  17. DeAngelis KM, D’Haeseleer P, Chivian D, Fortney JL, Khudyakov J, Simmons B, Woo H, Arkin AP, Davenport K, Goodwin L, Chen A, Ivanova N, Kyrpides NC, Mavromatis K, Woyke T, Hazen TC (2011) Complete genome sequence of Enterobacter lignolyticus SCF1. StandGenomic Sci 5:69–85

    Google Scholar 

  18. Palmowski L, Muller J (1999) Influence of the size reduction of organic waste on their anaerobic digestion. In: IAWQ II. international symposium on anaerobic digestion of solid waste, Barcelona, 15–17 June, pp 137–144

    Google Scholar 

  19. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technol 83:1–11

    Article  Google Scholar 

  20. Mani S, Tabil L, Sokhansanj S (2003) Compaction of biomass grinds—an overview of compaction of biomass grinds. Powder Handl Process 15:160–168

    Google Scholar 

  21. Kaliyan N, Vance Morey R (2009) Factors affecting strength and durability of densified biomass products: review. Biomass Bioenergy 33:337–359

    Article  Google Scholar 

  22. Yadong Li, Henry Liu (2000) High-pressure densication of wood residues to form an upgraded fuel. Biomass Bioenergy 19:177–186

    Article  Google Scholar 

  23. Pietsch W (2002) Agglomeration processes—phenomena, technologies, equipment. Wiley, Weinheim

    Google Scholar 

  24. Van Loo S, Koppejan J (2008) The handbook of biomass combustion and co-firing. Earthscan/James & James, Oxford

    Google Scholar 

  25. Klass DL (1998) Biomass for renewable energy, fuels, and chemicals. Academic Press, San Diego

    Google Scholar 

  26. Bhattacharya SC, Sett S, Shrestha RM (1989) State of the art for biomass densification. Energy Sources 11:161–182

    Article  Google Scholar 

  27. Ryu C, Yang YB, Khor A, Yates NE, Sharifi VN, Swithenbank J (2006) Effect of fuel properties on biomass combustion: Part I. Experiments—fuel type, equivalence ratio and particle size. Fuel 85:1039–1046

    Article  Google Scholar 

  28. Obernberger I, Thek G (2004) Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenergy 27:653–669

    Article  Google Scholar 

  29. Abdullah SS, Yusup S (2010) Method for screening of Malaysian biomass based on aggregated matrix for hydrogen production through gasification. J Appl Sci 10(24):3301–3306

    Article  Google Scholar 

  30. Davidsson K, Korsgren J, Pettersson J, Jaglid U (2002) The effects of fuel washing techniques on alkali release from biomass. Fuel 81:137–142

    Article  Google Scholar 

  31. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pre-treatment: fundamentals toward application. Biotechnol Adv 29:675–685

    Article  Google Scholar 

  32. Delgenes JP, Penaud V, Moletta R (2002) Pretreatment for the enhancement of anaerobic digestion of solid water. In: Biomethanization of the organic fraction of municipal solid waste, Chap. 8 . IWA Publishing, London, pp 201–228

  33. Takacs E, Wojnarovits L, Foldavary C, Hargagittai P, Borsa, J, Sajo I (2000) Effect of combined gamma-irradiation and alkali treatment on cotton-cellulose. Radiat Phys Chem 57:339–403

    Article  Google Scholar 

  34. Chang VS, Burr B, Holtzapple MT (1997) Lime pretreatment of switchgrass. Appl Biochem Biotechnol 63–65:3–19

    Article  Google Scholar 

  35. Basu P (2010) Biomass gasification and pyrolysis: practical design and theory. Academic Press, New York

    Google Scholar 

  36. Meszaros E, Varhegyi G, Jakab E (2004) Thermogravimetric and reaction kinetic analysis of biomass samples from an energy plantation. Energy Fuels 18:497–507

    Article  Google Scholar 

  37. Bergman PCA, Kiel JHA (2005) Torrefaction for biomass upgrading No. ECNC-05–103, the Netherlands

    Google Scholar 

  38. Demirbas A (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manage 41:633–646

    Article  Google Scholar 

  39. Prins MJ, Ptasinski KJ, Janssen FJJG (2006) Torrefaction of wood Part 2. Analysis of products. J Anal Appl Pyrolysis 77:35–40

    Article  Google Scholar 

  40. Uemura Y, Omar WN, Tsutsui T, Yusup S (2011) Torrefaction of oil palm wastes. Fuel 90:2585–2591

    Article  Google Scholar 

  41. Channiwala SA, Parikh PPA (2002) Unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81:1051–1063

    Article  Google Scholar 

  42. Abe F (1988) The thermochemical study of forest biomass. Bull For For Prod Res Inst 352:1–95

    Google Scholar 

  43. RITE-Tokyo Central Laboratory (2005) Development of mix combustion technology of coal and biomass for power plant. Report for global environment protection technology project, FY 2001–2004

    Google Scholar 

  44. Demirbas A (2011) Relationships between lignin contents and heating values of biomass. Energy Convers Manage 42:183–188

    Article  MathSciNet  Google Scholar 

  45. Selvig WA, Gibson IH (1945) Calorific value of coal. In: Lowry HH (ed) Chemistry of coal utilization, vol. 1. Wiley, New York, p 139

    Google Scholar 

  46. Seyler CA (1938) Petrology and the classification of coal: Pts I and II. Proc S Wales Inst Engrs 53:254–327

    Google Scholar 

  47. Tilman DA (1978) Wood as an energy resources. Academic Press, New York

    Google Scholar 

  48. Demirbas A, Gullu D, Caglar A, Akdeniz F (1997) Estimation of calorific values fuels from lignocellulosics. Energy Sources 19:765–770

    Article  Google Scholar 

  49. Uemura Y, Wissam NO, Tsutsui T, Subbarao D, Suzana Y (2010) Relationship between calorific value and elementary composition of torrefied lignocellulosic biomass. J Appl Sci 24:3250–3256

    Google Scholar 

  50. Prins MJ, Ptasinski KJ, Janssen FJJG (2006) Torrefaction of wood Part 1. Weight loss kinetics. J Anal Appl Pyrolysis 77:28–34

    Article  Google Scholar 

  51. Uemura Y, Wissam NO, Othman NA, Suzana Y, Tsutsuit T (2012) Torrefaction of oil palm EFB in the presence of oxygen. Fuel. Available online 19 November 2011

    Google Scholar 

  52. Arias B, Pevida C, Fermoso J, Plaza MG, Rubiera F, Pis JJ (2008) Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol 89:169–175

    Article  Google Scholar 

  53. Almeida G, Brito JO, Perré P (2010) Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: the potential of mass loss as a synthetic indicator. Bioresource Technol 101:9778–9784

    Article  Google Scholar 

  54. Bergman PCA, Boersma AR, Zwart RWR, Kiel JHA (2005) Torrefaction for biomass co-firing in existing coal-fires power stations. ECN-C-05–013

    Google Scholar 

  55. Jalan RK, Srivastava VK (1999) Studies on pyrolysis of a single biomass cylindrical pellet—kinetic and heat transfer effects. Energy Convers Manage 40:467–494

    Article  Google Scholar 

  56. Felfli FF, Luengo CA, Suárez JA, Beatón PA (2005) Wood briquette torrefaction. Energy Sustainable Dev 9:19–22

    Article  Google Scholar 

  57. Phanphanich M, Mani S (2011) Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresource Technol 102:1246–1253

    Article  Google Scholar 

  58. Couhert C, Salvador S, Commandré J-M (2009) Impact of torrefaction on syngas production from wood. Fuel 88:2286–2290

    Article  Google Scholar 

  59. Sànchez O, Sierra R, Almeciga-Diaz CJ (2011) Delignification process of Agro-industrial wastes an alternative to obtain fermentable carbohydrates for producing fuel. In: Manzanera M (ed) Alternative fuel. InTech, Croatia, pp 111–121

    Google Scholar 

  60. Isroi RM, Siti S, Niklasson C, Cahyanto MN, Lundquist K, Taherzadeh MJ (2011) Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. Bioresources 6(4):5224–5259

    Google Scholar 

  61. Ahmad Khushairi Z, Zainol N (2011) Screening factors affecting biological delignification process of oil palm trunk using local oyster mushroom (Pleurotus ostreatus). Int J Chem Environ Eng 2(4). http://www.warponline.org/research_papers/pdf/pdf259.pdf. Accessed 12 May 2012

  62. Mohan PR, Ramesh B, Reddy OVS (2012) Biological pretreatment of rice straw by Phanarocheate chrysosporium for the production of celluloses and xylanases using Asperigillus niger Isolate. Res J Microbiol 7(1):1–12

    Article  Google Scholar 

  63. Ejechi BO, Obuekwe CO, Ogbimi AO (1996) Microchemical studies of wood degradation by Brown Rot and White Rot Fungi in two tropical timbers. Int Biodeterior Biodegrad 119–122

    Google Scholar 

  64. Hatakka A (2001) Biodegradation of lignin. In: Hofricther A, Steinbüchel A (eds) Biopolymer, biology, chemistry, biotechnology, applications, vol. 1, Wiley, New York, pp 129–180

    Google Scholar 

  65. Kunamneni A, Ballesteros A, Plou FJ, Alcade M (2007) Fungal laccase—a versatile enzyme for biotechnological applications. In: Méndez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. FORMATEX, Badajoz

    Google Scholar 

  66. Vikineswary S, Abdullah N, Renuvathani M, Sekaran M, Pandey A, Jones EBG (2006) Productivity of laccase in solid substrate fermentation of selectedagro-residues by Pycnoporus sanguineus. Bioresource Technol 97:171–177

    Article  Google Scholar 

  67. Sugiura M, Hirai H, Nishida T (2003) PuriȻcation and characterization of a novel lignin peroxidase fromwhite-rot fungus Phanerochaete sordida YK-624. FEMS Microbiol Lett 224:285–290

    Article  Google Scholar 

  68. Ruiz-Dueñas FJ, Morales M, Garcia E, Miki Y, Jesus M, Martinez MJ, Martinez AT (2009). Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 60(2):441–452

    Article  Google Scholar 

  69. Roushdy MM, Abdel-Shakour EH, El-Agamy EI (2011) Biotechnological approach for lignin peroxidase (LiP) production from agricultural wastes (Rice Husk) by Cunninghamella elegans. J Am Sci 7(5). http://www.jofamericanscience.org/journals/am-sci/am0705/02_4896am0705_6_13.pdf. Accessed 14 May 2012

  70. Pérez-Boada M, Ruiz-Duenas FJ, Pogni R, Basosi R, Choinowski T, Martinez MJ, Piontek K, Martinez AT (2005) Versatile peroxidase oxidation of high redox potential aromatic compounds: site directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol 354:385–402

    Article  Google Scholar 

  71. Syafwina HY, Watanabe T, Kuwahara M (2002) Pretreatment of oil empty fruit bunch by white-rot fungi for enzymatic saccharification. Wood Res 89:19–20

    Google Scholar 

  72. Hamisan AF, Abd-Aziz S, KamaruddinK (2009) Delignification of oil palm empty fruit bunch using chemical and microbial pretreatment methods. Int J Agric Res 4(8):250–259

    Article  Google Scholar 

  73. Namoolnoy P, Phoolphundh S, Wongwincharn A (2011) Biodegradation of lignin in oil palm fronds by white rot fungi. Kasertsart J (Nat Sci) 45:254–259

    Google Scholar 

  74. Höije A, Gröndahl M, Tømmeraas K, Gatenholm P (2005) Isolation and characterization of physicochemical and material properties of arabinoxylans from barley husks. Carbohydr Polym 61:266–275

    Article  Google Scholar 

  75. Oasmaa A, Leppämä ki E, Koponen P, Levander J, Tapola E (1997) Physical characterisation of biomass-based pyrolysis liquids. Application of standard fuel oil analyses. Technical Research Centre of Finland, Espoo

    Google Scholar 

  76. Sarkilahti H (1996) Pyrolyysioljyn suodatus (Filtration of pyrolysis oil). Master thesis, Helsinki University of Technology, Espoo

    Google Scholar 

  77. Hew KL, Tamidi AM, Yusup S, Lee KT, Ahmad MM (2010) Catalytic cracking of bio-oil to organic liquid product (OLP). Bioresource Technol 101(22):8855–8858

    Article  Google Scholar 

  78. Judit A, Eleni A, Angelos L, Michael S, Meret HN, Aud B, Johan EH, Gisle O (2006) In situ catalytic upgrading of biomass derived fast pyrolysis vapours in fixed bed reactors using mesoporous materials. Microporous Mesoporous Mat 96:93–101

    Article  Google Scholar 

  79. Zhu XF, Zheng JL, Guo QX, Zhu QS (2005) Upgrading and utilization of bio-oil from biomass. Eng Sci 7(9):83–88

    Google Scholar 

  80. Zhang Q, Chang J, Wang TJ, Xu Y (2006) Progress on research of properties and upgrading of bio-oil. Petrochem Technol 35(5):493–498

    Google Scholar 

  81. Guo XY, Yan YJ, Li TC (2004) Influence of catalyst type and regeneration on upgrading of crude bio-oil through catalytical thermal cracking. Chinese J Process Eng 4(1):53–58

    Google Scholar 

  82. Babu BV, Chaurasia AS (2002) Modeling for pyrolysis: kinetic and heat transfer effects. Energy Convers Manage 44:2251–2275

    Article  Google Scholar 

  83. Twaiq FA, Zabidi NAM, Mohamed AR, Bathia S (2003) Catalytic conversion of palm oil over mesoporous aluminosilicate MCM-41 for the production of liquid hydrocarbon fuels. Fuel Process Technol 1660:1–16

    Google Scholar 

  84. Bao WR, Xue XL, Cao Q, Lu JJ, Lu YK (2006) Study on biomass pyrolytic liquid products with MCM-41/SBA-15 as catalyst. J Fuel Chem Technol 34(6):675–679

    Google Scholar 

  85. Guo XY, Yan YJ (2006) Analysis of the coke precursor on bio-oil refining catalyst and the regeneration of the deactivated catalyst. J Chem Eng Chin Univ 20(2):222–226

    MathSciNet  Google Scholar 

  86. Sharma RK, Bakhshi NN (1993a) Catalytic conversion of fast pyrolysis oil to hydrocarbon fuels over HZSM-5 in a dual reactor system. Biomass Bioenergy 5(6):445–455

    Article  Google Scholar 

  87. Sharma RK, Bakhshi NN (1993b) Conversion of non-phenolic fraction of biomass derived pyrolysis oil to hydrocarbon fuels over HZSM-5 using a dual reactor system. Bioresour Technol 45(3):195–203

    Article  Google Scholar 

  88. Hyun JP, Young-Kwon P, Joo-Sik K, Jong-ki J, Kyung-Seun Y, Jin-Heong Y, Jinh J, Jung MS (2006) Bio-oil upgrading over Ga modified zeolites in a bubbling fluidized bed reactor. Stud Surf Sci Catal 159:553–556

    Article  Google Scholar 

  89. Adam J, Antonakou E, Lappas A, Stocker M, Nilsen MH, Bouzga A, Hustad JE, Gisle O (2006) In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Microporous Mesoporous Mater 96(1–3):93–101

    Article  Google Scholar 

  90. Nokkosmaki MI, Kuoppala ET, Leppamaki EA, Krause AOI (2000) Catalytic conversion of biomass pyrolysis vapours with zinc oxide. J Anal Appl Pyrolysis 55(1):119–131

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzana Yusup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yusup, S. et al. (2013). Pre-treatment of Malaysian Agricultural Wastes Toward Biofuel Production. In: Fang, Z. (eds) Pretreatment Techniques for Biofuels and Biorefineries. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32735-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32735-3_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32734-6

  • Online ISBN: 978-3-642-32735-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics