Skip to main content

Biomass Pretreatments for Biorefinery Applications: Gasification

  • Chapter
  • First Online:
Pretreatment Techniques for Biofuels and Biorefineries

Part of the book series: Green Energy and Technology ((GREEN))

  • 2602 Accesses

Abstract

Biorefinery is the object of significant research and development efforts due to the scarcity of economically viable crude oil, renewable energy source, and its environmental benefits. This has prompted chemical corporations to look for alternative sources of carbon and hydrogen to produce chemicals, biologics, and other products such as biomass and waste matter. Two main reaction pathways are currently explored for biorefinery: thermochemical and biochemical. The thermochemical pathway proposes significantly higher reaction rates compared to current biological processes that use non-genetically modified organisms. One of the thermochemical pathways for biomass conversion is gasification which is a decomposition of solid fuels at high temperatures and oxygen-lean atmosphere. The successful development of biomass gasification processes requires addressing several critical technical difficulties including biomass diversity, feedstock treatment, gasification mechanism and reactions, gasifier types, and their performances. This chapter reviews key features of biomass gasification as a pretreatment for biorefining which can be used as a practical guide for gasification process. This chapter consists of six sections that include types of biomass for gasification, their properties, and pretreatment steps; gasification mechanism and reactions; syngas cleaning and conditioning; different gasifier, their characteristics, and modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Panwar NL (2011) Biomass for domestic and agro industrial application. Nova Science Pub-lishers, New York

    Google Scholar 

  2. Vassilev V, Baxter D (2012) An overview of the organic and inorganic phase composition of bio-mass. Fuel 94:1

    Article  Google Scholar 

  3. Skoulou V, Kantarelis E, Arvelakis S, Yang W, Zabaniotou A (2009) Effect of biomass leaching on H2 production, ash and tar behavior during high tem-perature steam gasification (HTSG) process. Int J Hy-drogen Energy 34(14):5666–5673

    Article  Google Scholar 

  4. Kobayashi N, Guilin P, Kobayashi J, Hatano S, Itaya Y, Mori S (2008) A new pulverized biomass utilization technology. Powder Technol 180:272–283

    Article  Google Scholar 

  5. Bergman PCA, Boersma AR, Kiel JHA, Prins MJ, Ptasinski KJ, Janssen FJJG (2004) Torre-faction for entrained flow gasification of biomass. Second world biomass conference. ETA-Florence and WIP-Munich, Rome, pp 679–682

    Google Scholar 

  6. Pels JR, Bergman PCA (2006) proof of prin-ciples—Phase 1, Report ECN, Petten, (NL) ECN-E-06-021

    Google Scholar 

  7. Prins MJ, Ptasinski KJ, Janssen FJJG (2006) More efficient biomass gasification via torrefac-tion. Energy 31:3458–3470

    Article  Google Scholar 

  8. Xiao R, Chen X, Wang F, Yu G (2010) Py-rolysis treatment of biomass for entrained-flow gasifi-cation. Appl Energy 78:1

    Google Scholar 

  9. Okumura Y, Hanaoka T, Sakanishi K (2009) Effect of pyrolysis conditions on gasification reactivity of woody biomass-derived char. Proc Combust Inst 32(2):2013–2020

    Article  Google Scholar 

  10. Rezaiyan J, Nicholas P (2005) Gasifica-tion technologies: a primer for engineers and scien-tists. CRC Press, Boca Raton

    Google Scholar 

  11. Van Den Aarsen F, Beenackers A, Swaaij WV (1985) Wood pyrolysis and carbon dioxide char gasification kinetics in a fluidized bed. Fundamentals of biomass thermochemical conversion. Elsevier, London

    Google Scholar 

  12. Hemati M, Laguerie C (1988) Détermination de la cinétique de vapogazéification de charbon de bois en thermobalance. Entropie 142:29–40

    Google Scholar 

  13. Janse AMC (1998) Combustion kinetics of char obtained by flash pyrolysis of pine wood. Ind Eng Chem Res 37(10):3909–3918

    Article  Google Scholar 

  14. Souza-Santos MLd (2004) Solid fuels combustion and gasification: modeling, simulation, and equipment operation. Marcel Dekker, New York

    Book  Google Scholar 

  15. Jensen A, Johnsson JE, Andries J, Laughlin K (1995) Formation and reduction of NOx in pressurized fluidized bed combustion of coal. Fuel 74(11):1555–1569

    Article  Google Scholar 

  16. Parent JD, Katz S (1948) Equilibrium compositions and enthalpy changes for the reaction of carbon, oxygen, and steam. Inst Gas Tech Res Bull 2

    Google Scholar 

  17. Boronson ML, Howard JB, Longwell LP, Peters WA (1987) Product yields and kinetics from the vapor phase cracking of wood pyrolysis tars. AIChE J 35(1):120–128

    Article  Google Scholar 

  18. Hamel S, Krumm W (2001) Mathematical modelling and simulation of bubbling fluidised bed gasifiers. Powder Technol 120(1–2):105–112

    Article  Google Scholar 

  19. Shafizadeh F, Chin P (1977) Thermal de-terioration of wood, ACS Symposium series. American Chemical Society, Washington, DC

    Google Scholar 

  20. Bradbury AGW, Sakai Y, Shafizadeh F (1979) A kinetic model for pyrolysis of cellulose. J Appl Polym Sci 23(11):3271–3280

    Article  Google Scholar 

  21. Thurner F, Mann U (1981) Kinetic investi-gation of wood pyrolysis. Ind Eng Chem Process Des Dev 20(3):482–488

    Article  Google Scholar 

  22. Koufopanos CA, Lucchesi A, Maschio G (1989) Kinetic modelling of the pyrolysis of biomass and biomass components. Can J Chem Eng 67:75–84

    Article  Google Scholar 

  23. Koufopanos CA et al (1991) Modeling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects. Can J Chem Eng 69:907–915

    Article  Google Scholar 

  24. Di Blasi C (1997) Influences of physical properties on biomass devolatilization characteristics. Fuel 76(10):957–964

    Article  Google Scholar 

  25. Gronli M, Varhegyi G, Blasi CD (2002) Thermogravimetric analysis and devolatilization kinet-ics of wood. Ind Eng Chem Res 41(17):4201–4208

    Article  Google Scholar 

  26. Mészáros E, Jakab E, Várhegyi G, Szep-esváry P (2004) Comparative study of the thermal be-havior of wood and bark of young shoots obtained from an energy plantation J Anal Appl Pyrolysis 72:317

    Google Scholar 

  27. Radmanesh R, Chaouki J (2006) A uni-fied lumped approach in kinetic modeling of biomass pyrolysis. Fuel 85(9):1211–1220

    Article  Google Scholar 

  28. Bassilakis R, Carangelo RM, Wójtowicz MA (2001) A comparative kinetic study on the pyroly-sis of three different wood species. Fuel 80:1765

    Article  Google Scholar 

  29. Teng H, Wei YC (1998) Thermogravimet-ric studies on the kinetics of rice hull pyrolysis and the influence of water treatment. Ind Eng Chem Res 37:3806–3811

    Article  Google Scholar 

  30. Meszaros E, Várhegyi G, Jakab E (2004) Thermogravimetric and reaction kinetic analysis of biomass samples from an energy plantation. Energy Fuel 18:497–507

    Article  Google Scholar 

  31. Varhegyi G, Antal MJ, Szekely T (1989) Kinetics of the thermal decomposition of cellulose, hemicellulose, and sugarcane bagasse. Energy Fuel 3:329–335

    Article  Google Scholar 

  32. Orfao JM, Antunes FJA, Figueiredo JL (1999) Pyrolysis kinetics of lignocellulosic materials three independent reactions model. Fuel 78:349–358

    Article  Google Scholar 

  33. Sorum L, Gronli MG, Hustad JE (2001) Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel 80:1217–1227

    Article  Google Scholar 

  34. Hajaligol MR, Howard JB, Longwell JP, Peters WA (1982) Product compositions and kinetics for rapid pyrolysis of cellulose. Ind Eng Chem Process Des Dev 21:457–465

    Article  Google Scholar 

  35. Nunn TR, Howard JB, Longwell JP, Pe-ters WA (1985) Product compositions and kinetics in the rapid pyrolysis of sweet gum hardwood. Ind Eng Chem Proc Des Dev 24:836–844

    Article  Google Scholar 

  36. Simmons G, Gentry M (1986) Kinetic for-mation of CO, CO2, H2, and light hydrocarbon gases from cellulose pyrolysis. J Anal Appl Pyrolysis 10:129–138

    Article  Google Scholar 

  37. Banyasz JL, Lyons-Hart J, Shafer KH (2001) Gas evolution and mechanism of cellulose py-rolysis. Fuel 80:1757–1763

    Article  Google Scholar 

  38. Walker PL, Rusinko F, Austin LG (1959) Gas reactions of carbon. Adv Catal 11:133–221

    Article  Google Scholar 

  39. Encinar JM, González JF, Rodriguez JJ, Ramiro MJ (2001) Catalysed and uncatalysed steam gasification of eucalyptus char: influence of variables and kinetic study. Fuel 80:2025–2036

    Article  Google Scholar 

  40. Barrio M, Gøbel B, Rimes H, Henriksen U, Hustad JE, Sørensen LH (2000) Steam gasification of wood char and the effect of hydrogen inhibition on the chemical kinetics, Prog Thermochem Biomass Convers 1:32–46

    Google Scholar 

  41. Di Blasi C (2009) Combustion and gasifi-cation rates of lignocellulosic chars. Prog Energy Combust Sci 35(2):121–140

    Article  Google Scholar 

  42. Probstein RF, Hicks RE (2006) Synthetic fuels. Dover Publications, New York, pp 98–99.

    Google Scholar 

  43. Boerrigter H, Rauch R (2005) Syngas production and utilization. In: Knoef HAM (ed) Bio-mass gasification handbook, chap. 10. Biomass Technology Group, Enschede

    Google Scholar 

  44. Liden AG, Berruti F, Scott DS (1988) A kinetic model for the production of liquids from the flash pyrolysis of biomass. Chem Eng Comm 65(1):207–221

    Article  Google Scholar 

  45. Rath J, Staudinger G (2001) Vapour phase cracking of tar from pyrolysis of birch wood. Therm Sci 5(2):83–94

    Google Scholar 

  46. Rath J, Staudinger G (2001) Cracking re-actions of tar from pyrolysis of spruce wood. Fuel 80(10):1379–1389

    Article  Google Scholar 

  47. Sutton D, Kelleher B, Ross JRH (2001) Review of literature on catalysts for biomass gasifica-tion. Fuel Process Technol 73:155–173

    Article  Google Scholar 

  48. Dayton D. (2002) A review of the literature on catalytic biomass tar destruction. National Re-newable Energy Laboratory, New York

    Book  Google Scholar 

  49. Varhegyi G, Antal MJ (1988) Simultane-ous thermogravimetric-mass spectrometric studies of the thermal decomposition of biopolymers. 1. Avicel cellulose in the presence and absence of catalysts. Energy Fuel 2:267–272

    Article  Google Scholar 

  50. Corella J, Herguido J, Gonzalez-Saiz J, Alday FJ, Rodrıguez-Trujillo JL (1988) Fluidized bed steam gasification of biomass with dolomite and with a commercial FCC catalyst. Research in thermo-chemical biomass conversion. Elsevier, London, pp 754–765

    Google Scholar 

  51. Olivares A, Aznar MP, Caballero MA (1997) Biomass gasification: produced gas upgrading by in-bed use of dolomite. Ind Eng Chem Res 36:5220–5226

    Article  Google Scholar 

  52. Narvaez I, Orio A, Aznar MP (1996) Bio-mass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of the produced raw gas. Ind Eng Chem Res 35(7):2110–2120

    Google Scholar 

  53. Corella J, Toledo JM, Padilla R (2004) Olivine or dolomite as in-bed additive in biomass gasi-fication with air in a fluidized bed: which is better? En-ergy Fuel 18(3):713–720

    Article  Google Scholar 

  54. Courson C, Makaga E, Petit C, Kienne-mann A (2000) Development of Ni catalysts for gas production from biomass gasification reactivity in steam- and dry-reforming. Catal Today 63:427

    Article  Google Scholar 

  55. Swierczynski D, Courson C (2006) Char-acterization of Ni−Fe/MgO/Olivine catalyst for fluidized bed steam gasification of biomass. Chem Mater 18:4025

    Article  Google Scholar 

  56. Rapagna S, Gallucci K, Di MM (2010) Gas cleaning, gas conditioning and tar abatement by means of a catalytic filter candle in a biomass fluid-ized-bed gasifier. Bioresour Technol 101:7123–7130

    Article  Google Scholar 

  57. Gardner B, Davidson M, Guan X, Hendrix H, Shirley B (2001) Commercial readiness of hot-gas filtration for pressurised combustion. In: Dahlin R, Landham C, Spain J (eds) Proceedings, 16th Interna-tional Conference on FBC, Reno. Southern Research Institute, Wilsonville

    Google Scholar 

  58. Sharma SD, Dolan M, Ilyushechkin AY, McLennan KG, Nguyen T, Chase D (2010) Recent developments in dry hot syngas cleaning processes. Fuel 89:817–826

    Article  Google Scholar 

  59. Knoef HAM (2000) Inventory of biomass gasifier manufacturers and installations. Final report to the European Commission, Contract DIS/1734/98–NL, Biomass Technology Group B.V., University of Twente, Enschede, The Netherlands

    Google Scholar 

  60. Punjak WA (1988) High temperature in-teractions of alkali vapours with solids during coal combustion and gasification, Ph.D. thesis, The Uni-versity of Arizona, USA

    Google Scholar 

  61. Iversen HL, Gøbel B (2004) Update on gas cleaning technologies for biomass gasification gas for different applications. Biomass Gasification Group, Denmark

    Google Scholar 

  62. Higman C, Van Der Burgt M (2008) Gasi-fication, 2nd edn. Gulf Professional Publish-ing/Elsevier, Oxford

    Google Scholar 

  63. Saracco G, Specchia V (1994) Catalytic inorganic membrane reactors: present experience and future opportunities, Catal Rev Sci Eng 36(2):305

    Article  Google Scholar 

  64. Ma L, Verelst H, Baron GV (2005) Inte-grated high temperature gas cleaning: tar removal in biomass gasification with a catalytic filter. Catal Today 105:729–734

    Article  Google Scholar 

  65. Nacken M, Ma L, Engelen K, Heidenreich S, Baron GV (2007) Development of a tar reforming catalyst for integration in a ceramic filter element and use in hot gas cleaning. Ind Eng Chem Res 46:1945–1951

    Article  Google Scholar 

  66. Carlos L (2005) High temperature air/steam gasification of biomass in an updraft fixed batch type gasifier, Ph.D. thesis, Royal Institute of Technology, Energy Furnace and Technology, Stock-holm, Sweden

    Google Scholar 

  67. Maniatis K (2001) Progress in biomass gasification: an overview. In: Bridgwater AS (ed) Pro-gress in thermochemical biomass conversion, vol I. Blackwell, London

    Google Scholar 

  68. Aghabararnejad M, Chaouki J, Patience GS (2011) The development of a novel Cu-Mn oxygen carrier for the chemical looping gasification of biomass, International conference on circulating fluid-ized beds and fluidization

    Google Scholar 

  69. Chen S, Wang D, Xue Z, Sun X, Xiang W (2011) Calcium looping gasification for high-concentration hydrogen production with CO2 capture in a novel compact fluidized bed: simulation and op-eration requirements. Int J Hydrogen Energy 36(8):4887–4899

    Article  Google Scholar 

  70. Corella J, Toledo JM, Molina G (2007) A review on dual fluidized-bed biomass gasifiers. Ind Eng Chem Res 46(21):6831–6839

    Article  Google Scholar 

  71. Van Der Drift A, Boerrigter H, Coda B (2004) Entrained flow gasification of biomass: ash behaviour, feeding issues and system analyses, Re-port C-04-039. Energy Research Centre of The Neth-erlands (ECN), Petten, The Netherlands, p 58

    Google Scholar 

  72. Dautzenberg K, Hanf J (2008) Biofuel chain development in Germany: organisation, oppor-tunities, and challenges, Energy Policy 36:485–489

    Article  Google Scholar 

  73. Horgan JJ, Morrison FH (1979) Centrifu-gal combustor with fluidized bed and construction thereof.

    Google Scholar 

  74. De Wilde J, De-Broqueville A (2008) Ex-perimental investigation of a rotating fluidized bed in a static geometry, Powder Technol 183:426–435

    Article  Google Scholar 

  75. Abdollahi NM, Chaouki J (2010) Biomass gasification in rotating fluidized bed. Conference on fluidization, Halifax, Nova Scotia, Canada

    Google Scholar 

  76. Li XT, Grace JR, Watkinson AP, Lim CJ, Ergudenler AE (2001) Equilibrium modeling of gasifi-cation free energy minimization approach and its ap-plication to a circulating fluidized bed coal gasifier. Fuel 80:195–207

    Article  Google Scholar 

  77. Baratieri M, Baggio P, Bosio B, Grigiante M, Longo GA (2009) The use of biomass syngas in IC engines and CCGT plants: a comparative analysis. Appl Therm Eng 29(16):3309–3318

    Article  Google Scholar 

  78. Toonssen R, Woudstra N, Verkooijen AHM (2008) Exergy analysis of hydrogen production plants based on biomass gasification. Int J Hydrogen Energy 33(15):4074–4082

    Article  Google Scholar 

  79. Paviet F, Chazarenc F, Tazerout M (2009) Thermo chemical equilibrium modelling of a biomass gasifying process using ASPEN PLUS. Int J Chem Reactor Eng 7:A40

    Google Scholar 

  80. Mathieu P, Dubuisson R (2002) Performance analysis of a biomass gasifier. Energy Convers Manage 43(9–12):1291–1299

    Article  Google Scholar 

  81. Toonssen R, Woudstra N, Verkooijen AHM (2008) Exergy analysis of hydrogen production plants based on biomass gasification. Int J Hydrogen Energy 33(15):4074–4082

    Article  Google Scholar 

  82. Hannula I, Kurkela E (2010). A semi-empirical model for pressurised air-blown fluidised-bed gasification of biomass. Bioresour Technol 101(12):4608–4615

    Article  Google Scholar 

  83. Nikoo MB, Mahinpey N (2008) Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass Bioenergy 32(12):1245–1254

    Article  Google Scholar 

  84. Wang Y, Dong W, Dong L, Yue J, Gao S, Suda T, Xu G (2010) Production of middle caloric fuel gas from coal by dual-bed gasification technology. Energy Fuel 24(5):2985–2990

    Article  Google Scholar 

  85. Mitta N, Ferrer-Nadal S, Lazovic A, Perales J, Velo E, Puigjaner L (2006) Modelling and simulation of a tyre gasification plant for synthesis gas production. 16th European symposium on computed aided process engineering and 9th international symposium on process systems engineering

    Google Scholar 

  86. Yan H, Rudolph V (2000) Modeling a compartmented fluidized bed process using ASPEN PLUS. Chem Eng Commun 183:1–38

    Article  Google Scholar 

  87. Sudiro M, Zanella C, Bressan L, Fontana M, Bertucco A (2009) Synthetic natural gas (SNG) from petcoke: model development and simulation, 9th International conference on chemical and process engineering, Rome, Italy

    Google Scholar 

  88. Abdelouahed L, Authier O, Mauviel G, Corriou JP, Verdier G, Dufour A (2012) Detailed modelling of biomass gasification in dual fluidized bed reactors under Aspen Plus. Energy Fuel

    Google Scholar 

  89. Puig-Arnavat M, Bruno JC, Coronas A (2010) Review and analysis of biomass gasification models. Renewable Sustainable Energy Rev 14(9):2841–2851

    Article  Google Scholar 

  90. Radmanesh R, Chaouki J, Guy C (2006) Biomass gasification in a bubbling fluidized bed reac-tor: experiments and modeling. AIChE J 52(12):4258−4272

    Article  Google Scholar 

  91. Kunii D, Levenspiel O (1991) Fluidization engineering, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  92. Grace JR (1986) Fluid beds as chemical reactors. In: Geldart D (ed) Gas fluidization technol-ogy, Wiley, Chichester, pp 285–339

    Google Scholar 

  93. Davidson F (1985) Davidson JF, Clift R, Harrison D (eds) Fluidization, 2nd edn. Academic Press, London

    Google Scholar 

  94. Wen CY, (1979) Chaung TZ Entrainment coal gasification modeling. Ind Eng Chem Proc Des Dev 18(4):684–695

    Article  Google Scholar 

  95. Radmanesh R, Mabrouk R, Chaouki J, Guy C (2005) The effect of temperature on solids mix-ing in a bubbling fluidized bed reactor. Int J Chem Reactor Eng 3

    Google Scholar 

  96. Sorensen LH, Saastamoinen J, Hustad JE (1996) Evaluation of char reactivity data by different shrink-ing-core models. Fuel 75(11):1294

    Article  Google Scholar 

  97. Di Blasi C (1996) Heat, momentum and mass transport through a shrinking biomass particle exposed to thermal radiation. Chem Eng Sci 51(7):1121–1132

    Google Scholar 

  98. Ma RP, Felder RM, Ferrell JK (1988) Modelling a pilot-scale fluidised bed coal gasification reactor. Fuel Process Technol 19:265–290

    Article  Google Scholar 

  99. Ross DP, Yan HM, Zhong Z, Zhang DK (2005) A non-isothermal model of bubbling fluidised-bed coal gasifier. Fuel 84:1469–1481

    Article  Google Scholar 

  100. Yan HM, Heidenreich C, Zhang DK (1999) Modelling of bubbling fluidised bed coal gasifi-ers. Fuel 78:1027–1047

    Article  Google Scholar 

  101. Jiang H, Morey RV (1992) A numerical model of a fluidized bed biomass gasifier. Biomass Bioenergy 3:431–447

    Article  Google Scholar 

  102. Fiaschi D, Michelini M (2001) A two-phase one-dimensional biomass gasification kinetics model. Biomass Bioenergy 21:1211–1232

    Article  Google Scholar 

  103. Vamvuka D, Woodburn ET, Senior PR (1995) Modelling of an entrained flow coal gasifier—1. Development of the model and general predictions. Fuel 74(10):1452–1460

    Article  Google Scholar 

  104. Fletcher DF, Haynes BS, Christo FC, Joseph SD (1997) Combustion modelling for an en-trained flow biomass gasifier. International conference on CFD in mineral and metal processing and power generation

    Google Scholar 

  105. Marklund M, Tegman R, Gebart R (2007) CFD modelling of black liquor gasification: identification of important model parameters. Fuel 86:1918–1926

    Article  Google Scholar 

  106. Di Blasi C (2008) Modeling chemical and physical processes of wood and biomass pyroly-sis. Prog Energy Combust Sci 34(1):47–90

    Article  Google Scholar 

  107. Syred N, Kurniawan K, Griffith T, Gral-ton T, Ray R (2007) Development of fragmentation models for solid fuel combustion and gasification as subroutines for inclusion in CFD codes. Fuel 86(14):2221–2231

    Article  Google Scholar 

  108. Kalogirou SA (2001) Artificial neural networks in renewable energy systems applications: a review. Renewable Sustainable Energy Rev 5:373–401

    Article  Google Scholar 

  109. Guo B, Li D, Cheng C, Lü Z-a, Shen Y (2001) Simulation of biomass gasification with a hy-brid neural network model. Bioresour Technol 76:77–83

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal Chaouki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abdollahi-Neisiani, M., Laviolette, JP., Jafari, R., Chaouki, J. (2013). Biomass Pretreatments for Biorefinery Applications: Gasification. In: Fang, Z. (eds) Pretreatment Techniques for Biofuels and Biorefineries. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32735-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32735-3_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32734-6

  • Online ISBN: 978-3-642-32735-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics