Coalitional Public Announcement Games

  • Thomas Ågotnes
  • Hans van Ditmarsch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7455)


Dynamic epistemic logic (del) is a popular framework for studying interaction in multi-agent systems. dels describe the actions available to the agents, and their epistemic pre- and post-conditions. By extending standard epistemic models with preferences over epistemic states, we can say something about rational behaviour as well, combining logic and game theory. In this paper we assume that preferences are represented by epistemic goal formulae, and actions are public announcements as described by public announcement logic. We are interested in analysing coalition formation and in particular coalitional stability in such settings. To this end, we describe how such epistemic goal models can be viewed as coalitional (cooperative) games, and study and characterise the resulting class of games and their solutions in different ways. We use a model of coalitional games under imperfect information that is more natural for many logical and computational settings than most existing models, and propose some related solution concepts extending the notion of the core under common knowledge.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ågotnes, T., Balbiani, P., van Ditmarsch, H., Seban, P.: Group announcement logic. Journal of Applied Logic 8(1), 62–81 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ågotnes, T., van Benthem, J., van Ditmarsch, H., Minica, S.: Question-answer games. Journal of Applied Non-Classical Logics 21(3-4), 265–288 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Ågotnes, T., van der Hoek, W., Wooldridge, M.: Reasoning about coalitional games. Artificial Intelligence 173(1), 45–79 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Ågotnes, T., van Ditmarsch, H.: What will they say? – public announcement games. Synthese (Special Section on Knowledge, Rationality and Action) 179(1), 57–85 (2011)zbMATHGoogle Scholar
  5. 5.
    Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., Lima, T.D.: What can we achieve by arbitrary announcements? A dynamic take on Fitch’s knowability. In: Samet, D. (ed.) Proceedings of TARK XI, pp. 42–51 (2007)Google Scholar
  6. 6.
    Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., Lima, T.D.: ‘Knowable’ as ‘known after an announcement’. Review of Symbolic Logic 1(3), 305–334 (2008)zbMATHCrossRefGoogle Scholar
  7. 7.
    Chalkiadakis, G., Boutilier, C.: Bayesian reinforcement learning for coalition formation under uncertainty. In: Proceedings of AAMAS 2004, pp. 1090–1097 (2004)Google Scholar
  8. 8.
    Chalkiadakis, G., Elkind, E., Jennings, N.R.: Simple coalitional games with beliefs. In: Proceedings of IJCAI 2009, pp. 85–90 (2009)Google Scholar
  9. 9.
    Dunne, P., van der Hoek, W., Kraus, S., Wooldridge, M.: Cooperative boolean games. In: Proceedings of AAMAS 2008, pp. 1015–1022 (2008)Google Scholar
  10. 10.
    Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Pr. (1995)Google Scholar
  11. 11.
    Gerbrandy, J., Groeneveld, W.: Reasoning about information change. J. of Logic, Language, and Inform. 6, 147–169 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Harrenstein, P.: Logic in Conflict. PhD thesis, Utrecht University (2004)Google Scholar
  13. 13.
    Harsanyi, J.C.: Games with Incomplete Information Played by ’Bayesian’ Players, Parts I, II, and III. Management Science 14, 159–182, 320–334, 486–502 (1967-1968)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Ieong, S., Shoham, Y.: Bayesian coalitional games. In: Proc. of AAAI, pp. 95–100 (2008)Google Scholar
  15. 15.
    Meyer, J.-J., van der Hoek, W.: Epistemic Logic for AI and Computer Science. Cambridge University Press (1995)Google Scholar
  16. 16.
    Myerson, R.B.: Virtual utility and the core for games with incomplete information. Journal of Economic Theory 136(1), 260–285 (2007)zbMATHCrossRefGoogle Scholar
  17. 17.
    Osborne, M., Rubinstein, A.: A Course in Game Theory. MIT Press (1994)Google Scholar
  18. 18.
    Harrenstein, J.-J.M.P., van der Hoek, W., Witteveen, C.: Boolean games. In: Proceeding of TARK VIII, pp. 287–298 (2001)Google Scholar
  19. 19.
    Plaza, J.: Logics of public communications. In: Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems, pp. 201–216 (1989)Google Scholar
  20. 20.
    van Benthem, J.: What one come to know. Analysis 64(2), 95–105 (2004)zbMATHCrossRefGoogle Scholar
  21. 21.
    van der Hoek, W., Pauly, M.: Modal logic for games and information. In: The Handbook of Modal Logic, pp. 1152–1180. Elsevier (2006)Google Scholar
  22. 22.
    van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas Ågotnes
    • 1
  • Hans van Ditmarsch
    • 2
    • 3
  1. 1.University of BergenNorway
  2. 2.University of SevillaSpain
  3. 3.IMScChennaiIndia

Personalised recommendations