Skip to main content

Combination of Sinusoidal and Single Binary Pattern Projection for Fast 3D Surface Reconstruction

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7476))

Abstract

A new method for 3D surface reconstruction is introduced combining classical fringe projection technique and binary single pattern projection. The new technique allows keeping the high accuracy obtained by phase shifting but solves the additional necessary period identification by replacing the extensive Gray-code sequence by a single image of a certain binary pattern. The core of the new method is an algorithm which realizes the assignment of corresponding image regions using epipolar constraint and image correlation. An algorithm is introduced generating a single binary pattern which is optimized concerning image correlation. The results of first measurements show the high robustness of the new method and advantages of the optimized patterns compared to the use of conventional random patterns.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, F., Brown, G.M.: Overview of three-dimensional shape measurement using optical methods. Opt. Eng. 39, 10–22 (2000)

    Article  Google Scholar 

  2. Schreiber, W., Notni, G.: Theory and arrangements of self-calibrating whole-body three-dimensional measurement systems using fringe projection techniques. Opt. Eng. 39, 159–169 (2000)

    Article  Google Scholar 

  3. Kühmstedt, P., Munkelt, C., Heinze, M., Himmelreich, M., Bräuer-Burchardt, C., Notni, G.: 3D shape measurement with phase correlation based fringe projection. In: Proc. SPIE, vol. 6616, 66160B-1–66160B-9 (2007)

    Google Scholar 

  4. Wang, Z., Nguyen, D.A., Barnes, J.C.: Some practical considerations in fringe projection profilometry. Optics and Lasers in Engineering 48, 218–225 (2010)

    Article  Google Scholar 

  5. Zhang, S.: Recent progresses on real-time 3D shape measurement using digital fringe projection techniques. Optics and Lasers in Engineering 48, 149–158 (2010)

    Article  Google Scholar 

  6. Zhang, S., Van Der Weide, D., Oliver, J.: Superfast phase-shifting method for 3-D shape measurement. Optics Express 18(9), 9684–9689 (2010)

    Article  Google Scholar 

  7. Creath, K.: Temporal Phase Measurement Methods. In: Interferogram Analysis - Digital Fringe Pattern Measurement Techniques, pp. 94–140. Inst. of Physics Publ., London (1993)

    Google Scholar 

  8. D’Apuzzo, N.: Surface measurement and tracking of human body parts from multi-image video sequences. ISPRS Journal 56, 360–375 (2002)

    Article  Google Scholar 

  9. Shi, C.Q., Zhang, L.Y.: A 3D Shape Measurement System Based on Random Pattern Projection. In: Proc. Fifth Int. Conf. on Frontier of Computer Science and Technology, pp. 147–153 (2010)

    Google Scholar 

  10. Dekiff, M., Bersenbrügge, P., Kemper, B., Denz, C., Dirksen, D.: Three-dimensional data acquisition by digital correlation of projected speckle patterns. Appl. Phys. B 99, 449–456 (2010)

    Article  Google Scholar 

  11. Wiegmann, A., Wagner, H., Kowarschik, R.: Human face measurement by projecting bandlimited random patterns. Optics Express 14(17), 7692–7698 (2006)

    Article  Google Scholar 

  12. Zhou, M., Fraser, C.S.: Automated extraction in real time photogrammetry. In: International Archives of Photogrammetry and Remote Sensing, IAPRS, vol. XXXIII, Part B5, pp. 943–950 (2000)

    Google Scholar 

  13. Salvi, J., Pages, J., Batlle, J.: Pattern codification strategies in structured light systems. Pattern Recognition 37, 827–849 (2004)

    Article  MATH  Google Scholar 

  14. Salvi, J., Fernandez, S., Pribanic, T., Llado, X.: A state of the art in structured light patterns for surface profilometry. Pattern Recognition 43, 2666–2680 (2010)

    Article  MATH  Google Scholar 

  15. Dejardins, D., Payeur, D.: Dense Stereo Range Sensing with Marching Pseudo-Random Patterns. In: Fourth Canadian Conference on Computer and Robot Vision (2007)

    Google Scholar 

  16. Xu, J., Ning, X., Zhao, Z., Gao, B., Shi, Q.: Rapid 3D surface profile measurement of industrial parts using two-level structured light patterns. Optics and Lasers in Engineering 49, 907–914 (2011)

    Article  Google Scholar 

  17. Pribanic, T., Obradovic, N., Salvi, J.: Stereo computation combining structured light and passive stereo matching. Optics Communications 285, 1017–1022 (2012)

    Article  Google Scholar 

  18. Luhmann, T., Robson, S., Kyle, S., Harley, I.: Close range photogrammetry. Wiley Whittles Publishing (2006)

    Google Scholar 

  19. Schaffer, M., Grosse, S., Kowarschik, R.: High-speed pattern projection for three-dimensional shape measurement using laser speckles. Applied Optics 49(18), 3622–3629 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bräuer-Burchardt, C., Kühmstedt, P., Notni, G. (2012). Combination of Sinusoidal and Single Binary Pattern Projection for Fast 3D Surface Reconstruction. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds) Pattern Recognition. DAGM/OAGM 2012. Lecture Notes in Computer Science, vol 7476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32717-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32717-9_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32716-2

  • Online ISBN: 978-3-642-32717-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics