Skip to main content

Dynamical SVM for Time Series Classification

  • Conference paper
Pattern Recognition (DAGM/OAGM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7476))

Abstract

We present a method for classifying multidimensional time series using concepts from nonlinear dynamical systems theory. Our contribution is an extension of support vector machines (SVM) that controls a nonlinear dynamical system. We use a chain of coupled Rössler oscillators with diffusive coupling to model highly nonlinear and chaotic time series. The optimization procedure involves alternating between using the sequential minimal optimization algorithm to solve the standard SVM dual problem and computing the solution of the ordinary differential equations defining the dynamical system. Empirical comparisons with kernel-based methods for time series classification on real data sets demonstrate the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahlmann, C., Haasdonk, B., Burkhardt, H.: On-line handwriting recognition with support vector machines - A kernel approach. In: Proceedings of the 8th International Workshop on Frontiers in Handwriting Recognition (2002)

    Google Scholar 

  2. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for support vector machines. Machine Learning 46(1-3), 131–159 (2002)

    Article  MATH  Google Scholar 

  3. Cuturi, M.: Fast global alignment kernels. In: Proceedings of the International Conference on Machine Learning (2011)

    Google Scholar 

  4. Cuturi, M., Doucet, A.: Autoregressive kernels for time series (2011), http://arxiv.org/abs/1101.0673

  5. Cuturi, M., Vert, J.P., Birkenes, O., Matsui, T.: A kernel for time series based on global alignments. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (2007)

    Google Scholar 

  6. Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Reviews of Modern Physics 57, 617–656 (1985)

    Article  MathSciNet  Google Scholar 

  7. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis, 2nd edn. Cambridge University Press (2004)

    Google Scholar 

  8. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.: Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Computation 13(3), 637–649 (2001)

    Article  MATH  Google Scholar 

  9. Keogh, E.J., Xi, X., Wei, L., Ratanamahatana, C.A.: The UCR Time Series Classification/Clustering Homepage (2006), http://www.cs.ucr.edu/~eamonn/time_series_data/

  10. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press (2002)

    Google Scholar 

  11. Parlitz, U., Junge, L., Lauterborn, W., Kocarev, L.: Experimental observation of phase synchronization. Physical Review E 54(2), 2115–2117 (1996)

    Article  Google Scholar 

  12. Platt, J.C.: Fast training of support vector machines using sequential minimal optimization, pp. 185–208. MIT Press, Cambridge (1999)

    Google Scholar 

  13. Rössler, O.E.: An equation for continuous chaos. Physics Letters A 57(5), 397–398 (1976)

    Article  Google Scholar 

  14. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing 26(1), 43–49 (1978)

    Article  MATH  Google Scholar 

  15. Shimodaira, H., Noma, K., Nakai, M., Sagayama, S.: Dynamic time-alignment kernel in support vector machine. In: Advances in Neural Information Processing Systems 14 (2001)

    Google Scholar 

  16. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 1st edn. Westview Press (2001)

    Google Scholar 

  17. Vishwanathan, S., Smola, A.J., Vidal, R.: Binet-cauchy kernels on dynamical systems and its application to the analysis of dynamic scenes. International Journal of Computer Vision 73(1), 95–119 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huerta, R., Vembu, S., Muezzinoglu, M.K., Vergara, A. (2012). Dynamical SVM for Time Series Classification. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds) Pattern Recognition. DAGM/OAGM 2012. Lecture Notes in Computer Science, vol 7476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32717-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32717-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32716-2

  • Online ISBN: 978-3-642-32717-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics