Skip to main content

Association Between Fire Causative Agents Within Land Cover Types and Global Fire Occurrence

  • Chapter
  • First Online:
Earth Observation of Global Changes (EOGC)

Abstract

The association between the global average fire density (AFD) and some possible causative agents—lightning discharges and population density—was analyzed using the Spearman correlation rank coefficient. The analysis was performed for different global fuel types, which were defined according to land cover types and climate. The results show mostly positive correlations between the AFD and lightning, with the highest coefficient values corresponding to shrubs and grasses in the Tropical Dry and Temperate Wet climates. The highest associations between the AFD and the population density were negative, and occurred in the Tropical Wet climate with crops and grasses land cover. The correlation coefficients varied widely depending on the fuel type, and not significant association was found for the Boreal climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Archibald S, Scholes RJ, Roy DP, Roberts G, Boschetti L (2010) Southern African fire regimes as revealed by remote sensing. Int J Wildland Fire 19:861–878

    Article  Google Scholar 

  • Arima EY, Simmons CS, Walker RT, Cochrane MA (2007) Fire in the Brazilian Amazon: a spatially explicit model for policy impact analysis. J Reg Sci 47(3):541–567

    Article  Google Scholar 

  • Arino O, Gross D, Ranera F, Bourg L, Leroy M, Bicheron P, et al., (2007) GlobCover: ESA service for global land cover from MERIS. In: IEEE international geoscience and remote sensing symposium, Barcelona, Spain, pp 2412–2415 doi:10.1109/IGARSS.2007.4423328 (IEEE- Inst Electrical Electronics Engineer Inc. )

  • Arroyo LA, Pascual C, Manzanera JA (2008) Fire models and methods to map fuel types: the role of remote sensing. For Ecol Manage 256(6):1239–1252. doi:10.1016/j.foreco.2008.06.048

    Article  Google Scholar 

  • Barroso Ramos-Neto M, Pivello VR (2000) Lightning fires in a brazilian savanna National Park: rethinking management strategies. Environ Manage 26(6):675–684. doi:10.1007/s002670010124

    Article  Google Scholar 

  • Bartholomé E, Belward AS (2005) GLC2000: a new approach to global land cover mapping from Earth observation data. Int J Remote Sens 26(9):1959–1977. doi:10.1080/01431160412331291297

    Article  Google Scholar 

  • Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165:525–538. doi:10.1111/j.1469-8137.2004.01252.x

    Article  Google Scholar 

  • Burgan RE, Klaver RW, Klaver JM (1998) Fuel models and fire potential from satellite and surface observations. [Article]. Int J Wildland Fire 8(3):159–170

    Article  Google Scholar 

  • Cardille JA, Ventura SJ, Turner MG (2001) Environmental and social factors influencing wildfires in the upper midwest. U S Ecol Appl 11(1):111–127

    Article  Google Scholar 

  • Christian HJ, Driscoll K, Goodman S, Blakeslee R, Mach D, D., B. The optical transient detector (OTD). In: Proceedings of the 10th international conference on atmospheric electricity, Osaka, Japan, June 10-14 1996: 368–371

    Google Scholar 

  • Chuvieco E, Giglio L, Justice C (2008) Global characterization of fire activity: toward defining fire regimes from Earth observation data. Glob Change Biol 14:1488–1502. doi:10.1111/j.1365-2486.2008.01585.x

    Article  Google Scholar 

  • Chuvieco E, Justice C (2010) Relations between human factors and global fire activity. In: Chuvieco E, Li J, Yang X (eds) Advances in Earth observation of global change. Springer, London, pp 187–199

    Chapter  Google Scholar 

  • Chuvieco E, Wagtendonk J, Riaño D, Yebra M, Ustin SL (2009) Estimation of fuel conditions for fire danger assessment. In: Chuvieco E (ed) Earth observation of wildland fires in Mediterranean ecosystems. Springer, Berlin, pp 83–96

    Chapter  Google Scholar 

  • Cochrane MA, Alencar A, Schulze MD, Souza CM Jr, Nepstad DC, Lefebvre P (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284:1832–1835

    Article  Google Scholar 

  • Cohen JD, Deeming JE (1985) The national fire-danger rating system: basic equations. 23 Berkeley, CA: USDA Forest Service, Pacific Southwest Forest and Range Experiment Station

    Google Scholar 

  • Collins TW (2005) Households, forests, and fire hazard vulnerability in the American west: a case study of a California community. Environ Hazards 6:23–37

    Article  Google Scholar 

  • Di Bella CM, Jobbágy EG, Paruelo JM, Pinnock S (2006) Continental fire density patterns in South America. Glob Ecol Biogeogr 15:192–199

    Article  Google Scholar 

  • Di Gregorio A, Jansen LJM (1998). Land cover classification system (LCCS): classification concepts and user manual. In: FAO (ed ), Environment and Natural Resources Service, Rome, pp 157

    Google Scholar 

  • FAO (2007) Fire management—global assessment 2006. FAO, Communication Division, Rome

    Google Scholar 

  • Friedl MA, McIver DK, Hodges JCF, Zhang XY, Muchoney D, Strahler AH (2002) Global land cover mapping from MODIS: algorithms and early results. Remote Sens Environ 83:287–302

    Article  Google Scholar 

  • Frost PGH (1999) Fires in Southern African woodlands: origins, impacts, effects and control. In: FAO meeting on public policies affecting forest fires, Vol Forestry Paper 138., Rome, Italy, FAO, pp 181–205

    Google Scholar 

  • Giglio L, Descloitres J, Justice CO, Kaufman YJ (2003) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87:273–282. doi:10.1016/S0034-4257(03)00184-6

    Article  Google Scholar 

  • Herold M, Mayaux P, Woodcock CE, Baccini A, Schmullius C (2008) Some challenges in global land cover mapping: an assessment of agreement and accuracy in existing 1 km datasets. Remote Sens Environ 112(5):2538–2556. doi:10.1016/j.rse.2007.11.013

    Article  Google Scholar 

  • Holdridge LR (1987) Ecología basada en zonas de vida Vol. 83, Colección libros y materiales educativos. San José, Costa Rica, IICA

    Google Scholar 

  • Kauffman JB, Cummings DL (1995) Fire in the Brazilian Amazon: 1. Biomass, nutrient pools, and looses in slashed primary forests. Oecologia 104:397–408

    Article  Google Scholar 

  • Kauffman JB, Cummings DL, Ward DE (1998) Fire in the Brazilian Amazon. 2. Biomass, nutrient pools and looses in cattle pastures. Oecologia 113(3):415–427

    Article  Google Scholar 

  • Kloster S, Mahowald NM, Randerson JT, Thornton PE, Hoffman FM, Levis S (2010) Fire dynamics during the 20th century simulated by the Community Land Model. Biogeosciences 7:1877–1902. doi:10.5194/bg-7-1877-2010

    Article  Google Scholar 

  • Krawchuk MA, Moritz MA, Parisien MA, Van Dorn J, Hayhoe K (2009) Global pyrogeography: the current and future distribution of wildfire. Plos One 4(4):e5102. doi:10.1371/journal.pone.0005102

    Article  Google Scholar 

  • Kummerow C, Barnes W, Kozu T, Shiue J, Simpson J (1998) The tropical rainfall measuring mission (TRMM) sensor package. J Atmos Oceanic Technol 15:809–817

    Article  Google Scholar 

  • Lasaponara R, Lanorte A (2007) Remotely sensed characterization of forest fuel types by using satellite ASTER data. Int J Appl Earth Obs Geoinf 9(3):225–234. doi:10.1016/j.jag.2006.08.001

    Article  Google Scholar 

  • Lohmann U, Sausen R, Bengtsson L, Cubasch U, Perlwitz J, Roeckner E (1993) The Köppen climate classification as a diagnostic tool for general circulation models. Climate Res 3:177–193

    Article  Google Scholar 

  • Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L (2000) Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int J Remote Sens 21(6 & 7):1303–1330

    Article  Google Scholar 

  • Manry DE, Knight RS (1986) Lightning density and burning frequency in South African vegetation. Vegetatio 66:67–76

    Google Scholar 

  • McCallum I, Obersteiner M, Nilsson S, Shvidenko A (2006) A spatial comparison of four satellite derived 1 km global land cover datasets. Int J Appl Earth Obs Geoinf 8(4):246–255. doi:10.1016/j.jag.2005.12.002

    Article  Google Scholar 

  • Minnich RA, Vizcaino EF, Sosa-Ramirez J, Chou YH (1993) Lightning detection rates and wildland fire in the mountains of northern Baja California, Mexico. Atmosfera 6:235–253

    Google Scholar 

  • Moreno JM, Vazquez A, Velez R (1998) Recent history of forest fires in Spain. In: Moreno JM (ed) Large forest fires. Backhuys Publishers, Leiden, pp 159–185

    Google Scholar 

  • Pechony O, Shindell DT (2009) Fire parametrization on a global scale. J Geophys Res 114:D16115. doi:10.1029/2009JD011927

    Article  Google Scholar 

  • Prentice SA, Mackerras D (1977) The ratio of cloud to cloud-ground lightning flashes in thunderstorms. J Appl Meteorol 16:545–550

    Article  Google Scholar 

  • Riaño D, Chuvieco E, Salas J, Palacios-Orueta A, Bastarrika A (2002) Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems. Can J For Res 32(8):15

    Article  Google Scholar 

  • Rorig ML, Ferguson SA (1999) Characteristics of lightning and wildland fire ignition in the Pacific Northwest. J Appl Meteorol 38:1565–1575

    Article  Google Scholar 

  • Stocks BJ, Mason JA, Todd JB, Bosch EM, Wotton BM, Amiro BD (2003) Large forest fires in Canada, 1959–1997. J Geophys Res 107:8149. doi:10.1029/2001JD000484

    Google Scholar 

  • Syphard AD, Radeloff VC, Keeley JE, Hawbaker TJ, Clayton MK, Stewart SI et al (2007) Human influence on California fire regimes. Ecol Appl 17(5):1388–1402

    Article  Google Scholar 

  • Tian XR, McRae DJ, Shu LF, Wang MY (2005) Fuel classification and mapping from satellite imagines. J For Res 16(4):311–316

    Article  Google Scholar 

  • Uhl C, Kauffman JB (1990) Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology 71(2):437–449

    Article  Google Scholar 

  • van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Kasibhatla PS, Arellano AF Jr (2006) Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos Chem Phys 6:3423–3441

    Article  Google Scholar 

  • Veblen TT, Kitzberger T, Villalba R, Donnegan J (1999) Fire history in northern Patagonia: the roles of humans and climatic variation. Ecol Monogr 69(1):47–67

    Article  Google Scholar 

  • Venevsky S, Thonicke K, Sitch S, Cramer W (2002) Simulating fire regimes in human-dominated ecosystems: Iberian Peninsula case study. Glob Change Biol 8:984–998

    Article  Google Scholar 

  • Zhao J, Sun L, Zhang, T, Zhang D, Guo G, Zhang Z, et al., (2007) Spatial and temporal distributions of lightning activities in Northeast China from satellite observation and analysis for lightning fire. In: Proceedings of the SPIE San Diego, Vol. 6679, USA, doi:10.1117/12.729349, pp 66790M

Download references

Acknowledgments

This research has been funded by the Fireglobe project (CGL2008-01083/CLI) and the University of Alcala by means of the FPI grant program which supports M. Lucrecia Pettinari.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lucrecia Pettinari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pettinari, M.L., Chuvieco, E. (2013). Association Between Fire Causative Agents Within Land Cover Types and Global Fire Occurrence. In: Krisp, J., Meng, L., Pail, R., Stilla, U. (eds) Earth Observation of Global Changes (EOGC). Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32714-8_18

Download citation

Publish with us

Policies and ethics