Skip to main content

Genetic Channel Capacity Revisited

  • Conference paper

Abstract

We revisit previous analyses on the computation of the maximum mutual information between a genetic sequence and its mutated versions down the generations, taking into account the protein translation mechanism of the genetic machinery. This amounts to the application of Shannon’s capacity to the study of the transmission of genetic information. Studies on this subject were started by Yockey and then followed by a number of researchers. Here we refine prior analyses employing the Kimura model of base substitution mutations, which is more realistic than the Jukes-Cantor model used by all previous research on this topic. Furthermore we undertake exact computations where prior works just used approximations, and we propose two practical applications of genetic capacity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quastler, H. (ed.): Information Theory in Biology. University of Illinois Press, Urbana (1953)

    Google Scholar 

  2. Yockey, H.P.: Information Theory, Evolution, and the Origin of Life. Cambridge University Press (2005)

    Google Scholar 

  3. Battail, G.: Does information theory explain biological evolution? Europhys. Lett. 40(3), 343–348 (1997)

    Article  Google Scholar 

  4. Guiaşu, S.: Information Theory with Applications. McGraw-Hill (1977)

    Google Scholar 

  5. Battail, G.: Information theory and error-correcting codes in genetics and biological evolution. In: Barbieri, M. (ed.) Introduction to Biosemiotics. Springer (2007)

    Google Scholar 

  6. May, E.E.: Bits and bases: An analysis of genetic information paradigms. In: 41st Asilomar Conf. on Signals, Systems and Computers (ACSSC), Asilomar, USA, pp. 165–169 (November 2007)

    Google Scholar 

  7. Gong, L., Bouaynaya, N., Schonfeld, D.: Information-theoretic model of evolution over protein communication channel. IEEE/ACM Trans. on Comp. Biol. and Bioinformat. 8(1), 143–151 (2011)

    Article  Google Scholar 

  8. Shannon, C.E.: A mathematical theory of communication. Bell System Tech. J. 27, 379–423, 623–656 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, W.: Molecular Evolution. Sinauer Associates (1997)

    Google Scholar 

  10. Yockey, H.P.: An application of information theory to the central dogma and the sequence hypothesis. J. Theor. Biol. (46), 369–406 (1974)

    Article  Google Scholar 

  11. Yu, Z., Mao, Z., Zhou, L.-Q., Anh, V.: A mutual information based sequence distance for vertebrate phylogeny using complete mitochondrial genomes. In: Procs. of the IEEE 3rd Intl. Conf. on Natural Computation, Haikou, China, pp. 253–257 (2007)

    Google Scholar 

  12. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience (1991)

    Google Scholar 

  13. Kimura, M.: A simple method for estimating evolutionary rate in a finite population due to mutational production of neutral and nearly neutral base substitution through comparative studies of nucleotide sequences. J. Mol. Biol. 16, 111–120 (1980)

    Google Scholar 

  14. Purvis, A., Bromham, L.: Estimating the transition/transversion ratio from independent pairwise comparisons with an assumed phylogeny. J. of Mol. Evol. 44, 112–119 (1997)

    Article  Google Scholar 

  15. Magnus, J.R., Neudecker, H.: Matrix Differential Calculus with Applications in Statistics and Econometrics, 3rd edn. John Wiley & Sons (1999)

    Google Scholar 

  16. Mackiewicz, P., Biecek, P., Mackiewicz, D., Kiraga, J., Baczkowski, K., Sobczynski, M., Cebrat, S.: Optimisation of Asymmetric Mutational Pressure and Selection Pressure Around the Universal Genetic Code. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part III. LNCS, vol. 5103, pp. 100–109. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University Press (1983)

    Google Scholar 

  18. Dayhoff, M., Schwartz, R., Orcutt, B.: A model of evolutionary change in proteins. Atlas of Protein Sequence and Structure 5(3), 345–352 (1978)

    Google Scholar 

  19. Blahut, R.: Computation of channel capacity and rate-distortion functions. IEEE Trans. on Inf. Theory 18(4), 460–473 (1972)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Balado, F. (2012). Genetic Channel Capacity Revisited. In: Hart, E., Timmis, J., Mitchell, P., Nakamo, T., Dabiri, F. (eds) Bio-Inspired Models of Networks, Information, and Computing Systems. BIONETICS 2011. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32711-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32711-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32710-0

  • Online ISBN: 978-3-642-32711-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics