Skip to main content

A Hybrid Local Feature for Face Recognition

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 7458)

Abstract

Efficient face encoding is an important issue in the area of face recognition. Compared to holistic features, local features have received increasing attention due to their good robustness to pose and illumination changes. In this paper, based on the histogram-based interest points and the speeded up robust features, we propose a hybrid local face feature, which provides a proper balance between the computational speed and discriminative power. Experiments on three databases demonstrate the effectiveness of the proposed method as well as its robustness to the main challenges of face recognition and even in practical environment.

Keywords

  • Local feature detection
  • feature descriptor
  • face recognition

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-32695-0_8
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-32695-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   143.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yan, S., Wang, H., Tang, X., Huang, T.: Exploring feature descritors for face recognition. In: Proc. ICASSP, pp. 629–632 (2007)

    Google Scholar 

  2. Liu, X., Chen, T., Thornton, S.M.: Eigenspace updating for non-stationary process and its application to face recognition. Pattern Recognition, 1945–1959 (2003)

    Google Scholar 

  3. Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N.: Regularization studies on lda for face recognition. In: Proc. ICIP, pp. 63–66 (2004)

    Google Scholar 

  4. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV, 91–110 (2004)

    Google Scholar 

  5. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Application to face recognition. IEEE Trans. PAMI 28(12), 297–301 (2006)

    CrossRef  Google Scholar 

  6. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust features. CVIU 110(3), 346–359 (2008)

    Google Scholar 

  7. van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Trans. PAMI 32(9), 1582–1596 (2009)

    CrossRef  Google Scholar 

  8. Cai, J., Zha, Z., Zhao, Y., Wang, Z.: Evaluation of histogram based interest point detector in web image classification and search. In: Proc. ICME, pp. 613–618 (2010)

    Google Scholar 

  9. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. IJCV 65(30), 43–72 (2005)

    CrossRef  Google Scholar 

  10. Harris, C., Stephens, M.: A combined corner and edge detection. IEEE Trans. PAMI, 147–151 (1988)

    Google Scholar 

  11. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. IJCV 60(1), 63–86 (2005)

    CrossRef  Google Scholar 

  12. Kadir, T., Zisserman, A., Brady, M.: An Affine Invariant Salient Region Detector. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 228–241. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  13. Maver, J.: Self-similarity and points of interest. IEEE Trans. PAMI 32(7), 1211–1226 (2010)

    CrossRef  Google Scholar 

  14. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. PAMI 10(27), 1615–1630 (2005)

    CrossRef  Google Scholar 

  15. Quelhas, P., Monay, F., Odobez, J.M., Gatica-Perez, D., Tuytelaars, T., Gool, L.V.: Modeling scenes with local descriptors and latent aspects. In: Proc. ICCV, pp. 883–890 (2005)

    Google Scholar 

  16. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. CVPR, pp. 886–893 (2005)

    Google Scholar 

  17. Lee, W., Chen, H.: Histogram-based interest point detectors. In: Proc. CVPR, pp. 1590–1596 (2009)

    Google Scholar 

  18. Viola, P., Jones, M.: Robust real-time face detection. In: Proc. ICCV, pp. 590–595 (2001)

    Google Scholar 

  19. Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: Proc. CVPR, pp. 142–149 (2000)

    Google Scholar 

  20. Sanderson, C., Paliwal, K.K.: Polynomial features for robust face authentication. In: Proc. ICIP, pp. 997–1000 (2002)

    Google Scholar 

  21. Kovac, J., Peer, P., Solina, F.: Illumination independent color-based face detection. In: Proc. ISPA, pp. 510–515 (2003)

    Google Scholar 

  22. Li, S.Z., Jain, A.K.: Handbook of Face Recognition. Springer (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gou, G., Huang, D., Wang, Y. (2012). A Hybrid Local Feature for Face Recognition. In: Anthony, P., Ishizuka, M., Lukose, D. (eds) PRICAI 2012: Trends in Artificial Intelligence. PRICAI 2012. Lecture Notes in Computer Science(), vol 7458. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32695-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32695-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32694-3

  • Online ISBN: 978-3-642-32695-0

  • eBook Packages: Computer ScienceComputer Science (R0)