Skip to main content

A Novel Video Face Clustering Algorithm Based on Divide and Conquer Strategy

  • Conference paper
  • 2654 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 7458)

Abstract

Video-based face clustering is a very important issue in face analysis. In this paper, a framework for video-based face clustering is proposed. The framework contains two steps. First, faces are detected from videos and divided into subgroups using temporal continuity information and SIFT (Scale Invariant Feature Transform) features. Second, the typical samples are selected from these subgroups in order to remove some non-typical faces. A similarity matrix is then constructed using these typical samples in the subgroups. The similarity matrix is further processed by our method to generate the face clustering results of that video. Our algorithm is validated using the SPEVI datasets. The experiments demonstrated promising results from our algorithm.

Keywords

  • face clustering
  • similarity measure
  • subgroup

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-32695-0_7
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-32695-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   143.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tao, J., Tan, Y.P.: Face clustering in videos using constraint propagation. In: Proc. ISCAS, pp. 3246–3249 (2008)

    Google Scholar 

  2. Li, J., Wang, Y.: Face indexing and searching from videos. In: Proc. ICIP, pp. 1932–1935 (2008)

    Google Scholar 

  3. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science, 972–976 (2007)

    Google Scholar 

  4. Eickeler, S., Wallhoff, F., Lurgel, U., Rigoll, G.: Content based indexing of images and video using face detection and recognition methods. In: Proc. ICASSP, vol. 3, pp. 1505–1508 (2001)

    Google Scholar 

  5. Chan, Y., Lin, S.H., Tan, Y.P., Kung, S.: Video shot classification using human faces. In: Proc. ICIP, pp. 843–846 (1996)

    Google Scholar 

  6. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV, 91–110 (2004)

    Google Scholar 

  7. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. CVPR, vol. 1, pp. 511–518 (2001)

    Google Scholar 

  8. Surveillance performance evaluation initiative (spevi), http://www.elec.qmul.ac.uk/staffinfo/andrea/spevi.html

  9. Jonathon Phillips, P., Wechsler, H., Huangand, J., Rauss, A.J.: The feret database and evaluation procedure for face-recognition algorithms. Image Vision Comput. 16(5), 295–306 (1998)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gou, G., Huang, D., Wang, Y. (2012). A Novel Video Face Clustering Algorithm Based on Divide and Conquer Strategy. In: Anthony, P., Ishizuka, M., Lukose, D. (eds) PRICAI 2012: Trends in Artificial Intelligence. PRICAI 2012. Lecture Notes in Computer Science(), vol 7458. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32695-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32695-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32694-3

  • Online ISBN: 978-3-642-32695-0

  • eBook Packages: Computer ScienceComputer Science (R0)