Skip to main content

Scalable Text Classification with Sparse Generative Modeling

  • Conference paper
PRICAI 2012: Trends in Artificial Intelligence (PRICAI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7458))

Included in the following conference series:

Abstract

Machine learning technology faces challenges in handling “Big Data”: vast volumes of online data such as web pages, news stories and articles. A dominant solution has been parallelization, but this does not make the tasks less challenging. An alternative solution is using sparse computation methods to fundamentally change the complexity of the processing tasks themselves. This can be done by using both the sparsity found in natural data and sparsified models. In this paper we show that sparse representations can be used to reduce the time complexity of generative classifiers to build fundamentally more scalable classifiers. We reduce the time complexity of Multinomial Naive Bayes classification with sparsity and show how to extend these findings into three multi-label extensions: Binary Relevance, Label Powerset and Multi-label Mixture Models. To provide competitive performance we provide the methods with smoothing and pruning modifications and optimize model meta-parameters using direct search optimization. We report on classification experiments on 5 publicly available datasets for large-scale multi-label classification. All three methods scale easily to the largest available tasks, with training times measured in seconds and classification times in milliseconds, even with millions of training documents, features and classes. The presented sparse modeling techniques should be applicable to many other classifiers, providing the same types of fundamental complexity reductions when applied to large scale tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maron, M.E.: Automatic indexing: An experimental inquiry. J. ACM 8, 404–417 (1961)

    Article  MATH  Google Scholar 

  2. McCallum, A., Nigam, K.: A comparison of event models for Naive Bayes text classification. In: AAAI 1998 Workshop on Learning for Text Categorization, pp. 41–48. AAAI Press (1998)

    Google Scholar 

  3. Rennie, J.D., Shih, L., Teevan, J., Karger, D.R.: Tackling the poor assumptions of naive bayes text classifiers. In: ICML 2003, pp. 616–623 (2003)

    Google Scholar 

  4. Jones, K.S.: A Statistical Interpretation of Term Specificity and its Application in Retrieval. Journal of Documentation 28(1), 11–21 (1972)

    Article  Google Scholar 

  5. Singhal, A., Buckley, C., Mitra, M.: Pivoted document length normalization. In: Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1996, pp. 21–29. ACM, New York (1996)

    Chapter  Google Scholar 

  6. Shanks, V.R., Williams, H.E., Cannane, A.: Indexing for fast categorisation. In: Proceedings of the 26th Australasian Computer Science Conference, ACSC 2003, vol. 16, pp. 119–127. Australian Computer Society, Inc., Darlinghurst (2003)

    Google Scholar 

  7. Tsoumakas, G., Katakis, I., Vlahavas, I.P.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–685. Springer (2010)

    Google Scholar 

  8. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification, pp. 22–30 (2004)

    Google Scholar 

  9. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recognition 37(9), 1757 (2004)

    Article  Google Scholar 

  10. Tsoumakas, G., Katakis, I., Vlahavas, I.: A Review of Multi-Label Classification Methods. In: Proceedings of the 2nd ADBIS Workshop on Data Mining and Knowledge Discovery, ADMKD 2006, pp. 99–109 (2006)

    Google Scholar 

  11. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier Chains for Multi-label Classification. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part II. LNCS, vol. 5782, pp. 254–269. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. McCallum, A.: Multi-label text classification with a mixture model trained by EM. In: Proceedings of the AAAI 1999 Workshop on Text Learning (1999)

    Google Scholar 

  13. Ueda, N., Saito, K.: Parametric mixture models for multi-labeled text. In: Advances in Neural Information Processing Systems, vol. 15, pp. 721–728. MIT Press (2002)

    Google Scholar 

  14. Wang, H., Huang, M., Zhu, X.: A generative probabilistic model for multi-label classification. In: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, pp. 628–637. IEEE Computer Society, Washington, DC (2008)

    Chapter  Google Scholar 

  15. Powell, M.J.D.: Direct search algorithms for optimization calculations. Acta Numerica 7, 287–336 (1998)

    Article  Google Scholar 

  16. Favreau, R.R., Franks, R.G.: Statistical optimization. In: Proceedings Second International Analog Computer Conference (1958)

    Google Scholar 

  17. Brunato, M., Battiti, R.: Rash: A self-adaptive random search method. In: Cotta, C., Sevaux, M., Sörensen, K. (eds.) Adaptive and Multilevel Metaheuristics. SCI, vol. 136, pp. 95–117. Springer (2008)

    Google Scholar 

  18. Loza Mencía, E., Fürnkranz, J.: Efficient Multilabel Classification Algorithms for Large-Scale Problems in the Legal Domain. In: Francesconi, E., Montemagni, S., Peters, W., Tiscornia, D. (eds.) Semantic Processing of Legal Texts. LNCS, vol. 6036, pp. 192–215. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: A New Benchmark Collection for Text Categorization Research. J. Mach. Learn. Res. 5, 361–397 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Puurula, A. (2012). Scalable Text Classification with Sparse Generative Modeling. In: Anthony, P., Ishizuka, M., Lukose, D. (eds) PRICAI 2012: Trends in Artificial Intelligence. PRICAI 2012. Lecture Notes in Computer Science(), vol 7458. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32695-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32695-0_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32694-3

  • Online ISBN: 978-3-642-32695-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics