Skip to main content

Power Allocation in Cognitive Radio Networks by the Reinforcement Learning Scheme with the Help of Shapley Value of Games

  • Conference paper
Internet of Things, Smart Spaces, and Next Generation Networking (ruSMART 2012, NEW2AN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 7469))

Abstract

In this paper, we present an algorithm based on the reinforcement learning scheme with the help of Shapley value of game for power allocation in the cognitive radio networks. The goal is to optimize the achievable transmission rates for secondary users and simultaneously to maximize their usefulness in the coalition. A performance measure is formed as a weighted linear function of the probability of the idle channel amongst N cooperating secondary users. Then, the problem is formulated as a semi-Markov decision process with an average cost criterion and reinforcement learning algorithm is developed to an approximate optimal control policy. The proposed scheme is driven by an estimated dynamic model of cognitive radio network learning simultaneously with the use of the Shapley value of games, to form the best coalition. The simulations are provided to compare the effectiveness of the proposed method against other methods under a variety of traffic conditions with some well-known policies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akyildiz, I.F., Lee, W.-Y., Vuran, M.C., Mohanty, S.: Next Generation/Dynamic Spectrum Access/Cognitive Radio Wireless Networks: a Survey. Computer Networks (2006)

    Google Scholar 

  2. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)

    Google Scholar 

  3. Cover, T.M., El Gamai, A., Salehi, M.: Multiple Access Channels with Arbitrarily Correlated Sources. IEEE Trans. on Information Theory 26(6), 648–657 (1980)

    Article  MATH  Google Scholar 

  4. Etkin, R., Tse, D., Wang, H.: Gaussian Interference Channel Capacity to Within One Bit. IEEE Trans. Information Theory 54(12), 5534–5562 (2008)

    Article  MathSciNet  Google Scholar 

  5. Fudenberg, D., Tirole, J.: Game Theory. The MIT Press, Cambridge (1991)

    Google Scholar 

  6. Han, T., Kobayashi, K.: A New Achievable Rate Region for the Interference Channel. IEEE Trans. on Information Theory 27(1), 49–60 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hu, J., Wellman, M.P.: Nash Q-Learning for General-Sum Stochastic Games. Journal of Machine Learning Research 4, 1039–1069 (2003)

    MathSciNet  Google Scholar 

  8. Laneman, J.N., Wornell, G.W.: Distributed Space-Time Coded Protocols for Exploiting Cooperative Diversity in Wireless Networks. IEEE Trans. on Information Theory 49(10), 2415–2425 (2003)

    Article  MathSciNet  Google Scholar 

  9. Lasaulce, S., Debbah, M., Altman, E.: Methodologies for Analyzing Equilibria in Wireless Games. IEEE Signal Processing Magazine, Special Issue on Game Theory for Signal Processing 26(5), 41–52 (2009)

    Google Scholar 

  10. Martyna, J.: A Mathematical Framework for the Multidimensional QoS in Cognitive Radio Networks. In: Balandin, S., Koucheryavy, Y., Hu, H. (eds.) NEW2AN/ruSMART 2011. LNCS, vol. 6869, pp. 440–449. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Mitola III, J.: The Software Radio Architecture. IEEE Comm. Mag. 33(5), 26–38 (1995)

    Article  Google Scholar 

  12. Shapley, L.S.: Rand Corporation Research Memorandum. Notes on the N-Person Game: Some Variants of the von Neumann-Morgenstern Definition of Solution, RM-812 (1952)

    Google Scholar 

  13. Shapley, L.S.: A Value for N-Person Games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contribution to the Theory of Games. Princeton University Press, Princeton (1953)

    Google Scholar 

  14. Stackelberg, V.H.: Marketform und Gleichgewicht. Oxford University Press, Oxford (1934)

    Google Scholar 

  15. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press, Cambridge (1998)

    Google Scholar 

  16. Thomas, R.W., Friend, D.H., DaSilva, L.A., MacKenzie, A.B.: Cognitive Networks: Adaptation and Learning to Achieve End-to-End Performance Objectives. IEEE Communication Magazine 44(12), 51–57 (2006)

    Article  Google Scholar 

  17. Watkins, C.J.C.H.: Learning from Delayed Rewards. Ph.D. Thesis, University of Cambridge, Cambridge, UK (1989)

    Google Scholar 

  18. Yau, K.-L.A., Komisarczuk, P., Teal, P.D.: Reinforcement Learning for Context Awareness and Intelligence in Wireless Networks: Review, New Features and Open Issues. Journal of Network and Computer Applications 35, 253–267 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martyna, J. (2012). Power Allocation in Cognitive Radio Networks by the Reinforcement Learning Scheme with the Help of Shapley Value of Games. In: Andreev, S., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networking. ruSMART NEW2AN 2012 2012. Lecture Notes in Computer Science, vol 7469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32686-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32686-8_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32685-1

  • Online ISBN: 978-3-642-32686-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics