Skip to main content
  • 5965 Accesses

Zusammenfassung

Die Grundeigenschaft, welche die Reduktion von dreidimensionalen Systemen auf eindimensionale ermöglicht, ist die Proportionalität der inkrementellen Steifigkeit zum Durchmesser des Kontaktgebietes. Diese Eigenschaft ist sowohl für Normalkontakte als auch für Tangentialkontakte gegeben. Die Ideen der Dimensionsreduktion können daher auch auf Tangentialkontakte unmittelbar übertragen werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Es sei darauf hingewiesen, dass in besonderen Fällen nichtdifferenzierbarer Formfunktionen nur der erste Integralausdruck in (5.34) genutzt werden darf.

Literatur

  1. Popov, V.L.: Contact Mechanics and Friction. Physical Principles and Applications. Springer, Berlin (2010)

    Google Scholar 

  2. Johnson, K.L.: Contact mechanics, Chapter 7. Cambridge University Press (1985)

    Google Scholar 

  3. Cattaneo, C.: Sul contatto di due corpi elastici: distribuzione locale degli sforzi. Rendiconti dell’Accademia nazionale dei Lincei 27, 342–348, 434–436, 474–478 (1938)

    Google Scholar 

  4. Mindlin, R.D.: Compliance of elastic bodies in contact. J. Appl. Mech. 16(3), 259–268 (1949)

    MathSciNet  MATH  Google Scholar 

  5. Truman, C.E., Sackfield, A., Hills, D.A.: Contact mechanics of wedge and cone indenters. Int. J. Mech. Sci. 37(3), 261–275 (1995)

    Article  MATH  Google Scholar 

  6. Jäger, J.: Axi-symmetric bodies of equal material in contact under torsion or shift. Arch. Appl. Mech. 65, 478–487 (1995)

    Article  MATH  Google Scholar 

  7. Johnson, K.L.: Surface interaction between elastically loaded bodies under tangential forces. Proc. R. Soc. A230, 531 (1955)

    Article  Google Scholar 

  8. Munisamy, R.L., Hills, D.A., Nowell, D.: Static axisymmetric Hertzian contacts subject to shearing forces. ASME J. Appl. Mech. 61, 278–283 (1994)

    Article  MATH  Google Scholar 

  9. Jäger, J.: A new principle in contact mechanics. J. Tribol. 120(4), 677–684 (1998)

    Article  Google Scholar 

  10. Ciavarella, M., Hills, D.A., Monno, G.: The influence of rounded edges on indentation by a flat punch. J. Mech. Eng. Sci. Proc. Inst. Mech. Eng. Part C 212(4), 319–328 (1998)

    Google Scholar 

  11. Jäger, J.: New analytical solutions for a flat rounded punch compared with FEM. In: Computational Methods in Contact Mechanics V, S. 307–316 (2001)

    Google Scholar 

  12. Ciavarella, M.: Indentation by nominally flat or conical indenters with rounded corners. Int. J. Solids Struct. 36, 4149–4181 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin L. Popov .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Popov, V.L., Heß, M. (2013). Tangentialkontakt. In: Methode der Dimensionsreduktion in Kontaktmechanik und Reibung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32673-8_5

Download citation

Publish with us

Policies and ethics