Advertisement

Normalkontakt mit Adhäsion

  • Valentin L. PopovEmail author
  • Markus Heß
Chapter

Zusammenfassung

Die Miniaturisierung von Bauteilen und die Herstellung immer glatterer Oberflächen kennzeichnen den bis heute andauernden Fortschritt in der Mikro- und Nanosystemtechnik. Zweifelsohne müssen auf diesen Gebieten bzw. den damit verbundenen Längenskalen Adhäsionskräfte zur Lösung von Kontaktaufgaben zwingend berücksichtigt werden. Adhäsion ist aber auch für solche Kontakte von Bedeutung, bei denen einer der Kontaktpartner aus sehr weichem Material besteht.

Literatur

  1. 1.
    Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324(1558), 301–313 (1971)CrossRefGoogle Scholar
  2. 2.
    Derjaguin, B.V., Muller, V.M., Toporov, Yu, P.: Effect of contact deformation on the adhesion of particles. J. Colloid Interface Sci. 55, 314–326 (1975)CrossRefGoogle Scholar
  3. 3.
    Bradley, R.S.: The cohesive force between solid surfaces and the surface energy of solids. Philos. Mag. 13, 853–862 (1932)zbMATHGoogle Scholar
  4. 4.
    Tabor, D.: Surface forces and surface interactions. J. Colloid Interface Sci. 58, 2–13 (1977)CrossRefGoogle Scholar
  5. 5.
    Johnson, K.L., Greenwood, J.A.: an adhesion map for the contact of elastic spheres. J. Colloid Interface Sci. 192, 326–333 (1997)CrossRefGoogle Scholar
  6. 6.
    Heß, M.: Über die exakte Abbildung ausgewählter dreidimensionaler Kontakte auf Systeme mit niedrigerer räumlicher Dimension. Cuvillier, Berlin (2011)Google Scholar
  7. 7.
    Kendall, K.: The adhesion and surface energy of elastic solids. J. Phys. D. Appl. Phys. 4, 1186–1195 (1971)CrossRefGoogle Scholar
  8. 8.
    Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A 221, 163–198 (1921)CrossRefGoogle Scholar
  9. 9.
    Griffith, A.A.: Theory of rupture.In: Biezeno, C. B., Burgers, J.M. (Hrsg.) Proceedings of the First International Congress for Applied Mechanics, S. 53–64 (1925)Google Scholar
  10. 10.
    Maugis, D., Barquins, M., Courtel, R.: Griffith cracks and adhesion of elastic solids. Métaux Corrosion Industrie 605, 1–10 (1976)Google Scholar
  11. 11.
    Maugis, D., Barquins, M.: Fracture mechanics and the adherence of viscoelastic bodies. J. Phys. D. Appl. Phys. 11(14), 1989–2023 (1978)CrossRefGoogle Scholar
  12. 12.
    Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)zbMATHGoogle Scholar
  13. 13.
    Johnson, K.L.: Adhesion and friction between a smooth elastic spherical asperity and a plane surface. Proc. R. Soc. Lond. A 453(1956), 163–179 (1997)CrossRefGoogle Scholar
  14. 14.
    Maugis, D., Barquins, M.: Adhesive contact of a conical punch on an elastic half-space. Le J. Phys. Lett. 42(5), 95–97 (1981)CrossRefGoogle Scholar
  15. 15.
    Barquins, M., Maugis, D.: Adhesive contact of axisymmetric punches on an elastic half-space: the modified Hertz-Huber’s stress tensor for contacting spheres. J. Theor. Appl. Mech. 1(2), 331–357 (1982)zbMATHGoogle Scholar
  16. 16.
    Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Johnson, K.L.: A note on the adhesion of elastic solids. Br. J. Appl. Phys. 9, 199–200 (1958)CrossRefGoogle Scholar
  18. 18.
    Maugis, D.: Contact, Adhesion and Rupture of Elastic Solids, S. 213–216. Springer, s.l. (2000)Google Scholar
  19. 19.
    Heß, M.: On the reduction method of dimensionality: the exact mapping of axisymmetric contact problems with and without adhesion. Phys. Mesomech. 15(5–6), 264–269 (2012)CrossRefGoogle Scholar
  20. 20.
    Briggs, G.A.D., Briscoe, B.J.: The effect of surface topography on the adhesion of elastic solids. J. Phys. D. Appl. Phys. 10, 2453–2466 (1977)CrossRefGoogle Scholar
  21. 21.
    Fuller, K.N.G., Roberts, A.D.: Rubber rolling on rough surfaces. J. Phys. D. Appl. Phys. 14, 221–239 (1981)CrossRefGoogle Scholar
  22. 22.
    Guduru, P.R.: Detachment of a rigid solid from an elastic wavy surface: theory. J. Mech. Phys. Solids 55, 445–472 (2007)CrossRefzbMATHGoogle Scholar
  23. 23.
    Guduru, P.R., Bull, C.: Detachment of a rigid solid from an elastic wavy surface: experiments. J. Mech. Phys. Solids 55, 473–488 (2007)CrossRefGoogle Scholar
  24. 24.
    Jin, C., Khare, K., Vajpayee, S., Yang, S., Jagota, A., Hui, C.-Y.: Adhesive contact between a rippled elastic surface and a rigid spherical indenter: from partial to full contact. Soft Matter. 7, 10728–10736 (2011)CrossRefGoogle Scholar
  25. 25.
    Yao, H., Gao, H.: Optimal shapes for adhesive binding between two elastic bodies. J. Colloid Interface Sci. 298(2), 564–572 (2006)CrossRefGoogle Scholar
  26. 26.
    Yao, H., Gao, H.: Mechanical principles of robust and releasable adhesion of gecko. J. Adhes. Sci. Technol. 21(12–13), 1185–1212 (2007)CrossRefGoogle Scholar
  27. 27.
    Maugis, D.: Extension of the Johnson-Kendall-Roberts theory of elastic contact of spheres to large contact radii. Langmuir 11(2), 679–682 (1995)CrossRefGoogle Scholar
  28. 28.
    Lin, Y.Y., Chen, H.Y.: Effect of large deformation and material nonlinearity on the JKR (Johnson-Kendall-Roberts) test of soft elastic materials. J. Polym. Sci. Part B. Polym. Phys. 44(19), 2912–2922 (2006)Google Scholar
  29. 29.
    Greenwood, J.A.: Adhesion of small spheres. Philos. Mag. 89(11), 945–965 (2009)CrossRefGoogle Scholar
  30. 30.
    Maugis, D., Barquins, M.: Adhesive contact of sectionally smooth-ended punches on elastic half-spaces: theory and experiment. J. Phys. D. Appl. Phys. 16(10), 1843–1874 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für MechanikTU BerlinBerlinDeutschland
  2. 2.Abt. IC StudienkollegTU BerlinBerlinDeutschland

Personalised recommendations