Skip to main content

Smoothness Scales and Calderón–Zygmund Theory in the Scalar–Valued Case

  • Chapter
  • First Online:
Multi-Layer Potentials and Boundary Problems

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2063))

  • 1217 Accesses

Abstract

While one of the main goals of this monograph is the systematic development of a Calderón–Zygmund theory for multi-layer type operators associated with higher-order operators with matrix-valued coefficients, the starting point is the consideration of the scalar-valued case. As such, the aim of this introductory chapter is to present an account of those aspects of the scalar theory which are most relevant for the current work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A quick inspection reveals that the same result and proof are valid in the more general case of domains whose complement is regular in the sense of Whitney (in the terminology of [57, p. 52]; cf. also [101, p. 1372] where the notion of quasi-Euclideanity is employed), i.e., subsets of \({\mathbb{R}}^{n}\) with the property that any two points X, Y in the complement may be joined with a rectifiable curve \({\gamma }_{X,Y }\) disjoint from the set in question and which satisfies (2.318).

References

  1. R.A. Adams, J.J.F. Fournier, in Sobolev Spaces. Pure and Applied Mathematics, vol. 140, 2nd edn. (Academic, New York, 2003)

    Google Scholar 

  2. V. Adolfsson, J. Pipher, The inhomogeneous Dirichlet problem for Δ 2 in Lipschitz domains. J. Funct. Anal. 159(1), 137–190 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Alvarado, I. Mitrea, M. Mitrea, Whitney-type extensions in geometrically doubling quasi-metric spaces, in Communications in Pure and Applied Analysis 12(1) (2013)

    Google Scholar 

  4. J. Bergh, J. Löfström, Interpolation Spaces. An introduction (Springer, Berlin, 1976)

    Google Scholar 

  5. M. Bownik, Boundedness of operators on Hardy spaces via atomic decompositions. Proc. Am. Math. Soc. 133(12), 3535–3542 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Brackx, R. Delanghe, F. Sommen, in Clifford Analysis. Research Notes in Mathematics, vol. 76 (Pitman, Boston, 1982)

    Google Scholar 

  7. K. Brewster, I. Mitrea, M. Mitrea, Stein’s extension operator on weighted Sobolev spaces on Lipschitz domains and applications to interpolation, in Contemporary Mathematics 581, 13–38 (2012)

    Google Scholar 

  8. V.I. Burenkov, Extension theory for Sobolev spaces on open sets with Lipschitz boundaries, in Nonlinear Analysis, Function Spaces and Applications, vol. 6 (Acad. Sci. Czech Repub., Prague, 1999), pp. 1–49

    Google Scholar 

  9. A. Calderón, Lebesgue spaces of differentiable functions and distributions, in Proceedings of the Symposium on Pure Mathematics, vol. IV (1961), pp. 33–49

    Google Scholar 

  10. A.P. Calderón, Intermediate spaces and interpolation, the complex method. Studia Math. 24, 113–190 (1964)

    MathSciNet  MATH  Google Scholar 

  11. M. Christ, in Lectures on Singular Integral Operators. CBMS Regional Conference Series in Mathematics, vol. 77 (American Mathematical Society, Providence, 1990)

    Google Scholar 

  12. D.-C. Chang, S.G. Krantz, E.M. Stein, H p theory on a smooth domain in N and elliptic boundary value problems. J. Funct. Anal. 114(2), 286–347 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. R.R. Coifman, A. McIntosh, Y. Meyer, Lintégrale de Cauchy définit un opérateur borné sur L 2 pour les courbes lipschitziennes. Ann. Math. 116, 361–387 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Coifman, G. Weiss, Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83(4), 569–645 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. G. David, S. Semmes, Singular Integrals and rectifiable sets in n: Beyond Lipschitz graphs. Astérisque 193, 152 (1991)

    MathSciNet  Google Scholar 

  16. G. David, S. Semmes, in Analysis of and on Uniformly Rectifiable Sets. Mathematical Surveys and Monographs (AMS Series, Providence, 1993)

    Google Scholar 

  17. R.A. DeVore, R.C. Sharpley, Maximal Functions Measuring Smoothness. Mem. Am. Math. Soc. 47, 293 (1984)

    MathSciNet  Google Scholar 

  18. M. Dindoš, M.Ṁitrea, Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains. Publ. Math. 46(2), 353–403 (2002)

    MATH  Google Scholar 

  19. S. Dispa, Intrinsic characterizations of Besov spaces on Lipschitz domains. Math. Nachr. 260, 21–33 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Fefferman, E.M. Stein, H p spaces of several variables. Acta Math. 129(3–4), 137–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Frazier, B. Jawerth, Decomposition of Besov spaces. Indiana Univ. Math. J. 34(4), 777–799 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Frazier, B. Jawerth, A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93 (1), 34–170 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Frazier, B. Jawerth, G. Weiss, in Littlewood-Paley Theory and the Study of Function Spaces. CBMS Regional Conference Series in Mathematics, vol. 79 (American Mathematical Society, Providence, 1991)

    Google Scholar 

  24. D. Goldberg, A local version of real Hardy spaces. Duke Math. J. 46, 27–42 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, vol. 24 (Pitman, Boston, 1985)

    Google Scholar 

  26. S. Hofmann, D. Mitrea, M. Mitrea, A.J. Morris, L p -Square Function Estimates on Spaces of Homogeneous Type and on Uniformly Rectifiable Sets, book manuscript (2012)

    Google Scholar 

  27. S. Hofmann, M. Mitrea, M. Taylor, Singular integrals and elliptic boundary problems on regular Semmes-Kenig-Toro domains. Int. Math. Res. Not. 2010, 2567–2865 (2010)

    MathSciNet  MATH  Google Scholar 

  28. L. Hörmander, in The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis. Classics in Mathematics, Reprint of the second (1990) edition (Springer, Berlin, 2003)

    Google Scholar 

  29. D. Jerison, C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130(1), 161–219 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Jerison, C.E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. Math. 46(1), 80–147 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  31. P.W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147(1–2), 71–88 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Jonsson, H. Wallin, Function Spaces on Subsets ofℝ n (Harwood Academic, New York, 1984)

    Google Scholar 

  33. N. Kalton, M. Mitrea, Stability results on interpolation scales of quasi-Banach spaces and applications. Trans. Am. Math. Soc. 350(10), 3903–3922 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. N. Kalton, S. Mayboroda, M. Mitrea, Interpolation of Hardy-Sobolev-Besov-Triebel-Lizorkin spaces and applications to problems in partial differential equations, in Interpolation Theory and Applications. Contemporary Mathematics, vol. 445 (American Mathematical Society, Providence, 2007), pp. 121–177

    Google Scholar 

  35. G.A. Kalyabin, Theorems on extension, multipliers and diffeomorphisms for generalized Sobolev-Liouville classes in domains with a Lipschitz boundary. Proc. Steklov Inst. Math. 3, 191–205 (1985)

    Google Scholar 

  36. P. Koskela, E. Saksman, Pointwise characterizations of Hardy-Sobolev functions, Math. Res. Lett. 15(4), 727–744 (2008)

    MathSciNet  MATH  Google Scholar 

  37. S. Mayboroda, M. Mitrea, Sharp estimates for Green potentials on non-smooth domains. Math. Res. Lett. 11(4), 481-492 (2004)

    MathSciNet  MATH  Google Scholar 

  38. V. Maz’ya, Sobolev Spaces (Springer, Berlin, 1985)

    Google Scholar 

  39. Y. Meyer, in Ondelettes et opérateurs, II, Opérateurs de Calderón-Zygmund. Actualités Mathématiques (Hermann, Paris, 1990)

    Google Scholar 

  40. A. Miyachi, H p spaces over open subsets of n. Studia Math. 95(3), 205–228 (1990)

    MathSciNet  Google Scholar 

  41. A. Miyachi, Extension theorems for real variable Hardy and Hardy-Sobolev spaces, in Harmonic Analysis (Sendai, 1990). ICM-90 Satellite Conference Proceedings (Springer, Tokyo, 1991), pp. 170–182

    Google Scholar 

  42. N. Miller, Weighted Sobolev spaces and pseudodifferential operators with smooth symbols. Trans. Am. Math. Soc. 269(1), 91–109 (1982)

    Article  MATH  Google Scholar 

  43. D. Mitrea, I. Mitrea, On the Besov regularity of conformal maps and layer potentials on nonsmooth domains. J. Funct. Anal. 201(2), 380–429 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. D. Mitrea, M. Mitrea, S. Monniaux, The Poisson problem for the exterior derivative operator with Dirichlet boundary condition on nonsmooth domains. Comm. Pure Appl. Anal. 7(6), 1295–1333 (2008)

    Article  MathSciNet  Google Scholar 

  45. D. Mitrea, I. Mitrea, M. Mitrea, The Divergence Theorem with non-tangential poitwise traces on the boundary, preprint (2012)

    Google Scholar 

  46. D. Mitrea, I. Mitrea, M. Mitrea, A Treatise on the Theory of Elliptic Boundary Value Problems, Singular Integral Operators, and Smoothness Spaces in Rough Domains, book manuscript (2012)

    Google Scholar 

  47. D. Mitrea, I. Mitrea, M. Mitrea, L. Yan, On the Geometry of Domains satisfying Uniform Ball Conditions, book manuscript (2012)

    Google Scholar 

  48. M. Mitrea, in Clifford Wavelets, Singular Integrals, and Hardy Spaces. Lecture Notes in Mathematics, vol. 1575 (Springer, Berlin, 1994)

    Google Scholar 

  49. M. Mitrea, M. Taylor, Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem. J. Funct. Anal. 176(1), 1–79 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  50. M. Mitrea, M. Taylor, The Poisson problem in weighted Sobolev spaces on Lipschitz domains. Indiana Univ. Math. J. 55(3), 1063–1089 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. A. Pelczyński, M. Wojciechowski, Sobolev spaces, in Handbook of the Geometry of Banach Spaces, ed. by W.B. Johnson, J. Lindenstrauss, vol. 2 (Elsevier, Amsterdam, 2003), pp. 1362–1423

    Google Scholar 

  52. T. Runst, W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Operators (de Gruyter, Berlin, 1996)

    Google Scholar 

  53. V. Rychkov, On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains. J. London Math. Soc. (2) 60(1), 237–257 (1999)

    Google Scholar 

  54. A. Seeger, A note on Triebel-Lizorkin spaces, in Approximation and Function Spaces, Banach Center Publ., No. 22 (PWN, Warsaw, 1989), pp. 391–400

    Google Scholar 

  55. S.W. Semmes, A criterion for the boundedness of singular integrals on hypersurfaces. Trans. Am. Math. Soc. 311(2), 501–513 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  56. E.M. Stein, in Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30 (Princeton University Press, Princeton, 1970)

    Google Scholar 

  57. E. Straube, Interpolation between Sobolev and between Lipschitz spaces of analytic functions on star-shaped domains. Trans. Am. Math. Soc. 316(2), 653–671 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  58. H. Tanabe, in Functional Analytic Methods for Partial Differential Equations. Monographs and Textbooks in Pure and Applied Mathematics, vol. 204 (Marcel Dekker, New York, 1997)

    Google Scholar 

  59. H. Triebel, Function spaces on Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers. Rev. Mat. Complut. 15, 475–524 (2002)

    MathSciNet  MATH  Google Scholar 

  60. H. Triebel, in Theory of Function Spaces, II. Monographs in Mathematics, vol. 84 (Birkhäuser, Basel, 1992)

    Google Scholar 

  61. G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59(3), 572–611 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  62. G. Verchota, The Dirichlet problem for the biharmonic equation in C 1 domains. Indiana Univ. Math. J. 36(4), 867–895 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mitrea, I., Mitrea, M. (2013). Smoothness Scales and Calderón–Zygmund Theory in the Scalar–Valued Case. In: Multi-Layer Potentials and Boundary Problems. Lecture Notes in Mathematics, vol 2063. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32666-0_2

Download citation

Publish with us

Policies and ethics