Skip to main content

Error-Controllable Simplification of Point Cloud

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 7380))

Abstract

Point cloud simplification has become a vital step in any point-based surface processing pipeline. This paper describes a fast and effective algorithm for point cloud simplification with feature preservation. First, feature points are extracted by thresholding curvatures; Second, for non-feature points, they are covered by distinct balls, the points in each ball are substituted by an optimized point. Thus, the simplified point cloud consists of extracted feature points and optimized points. This algorithm is able to produce coarse-to-fine models by controlling a general error level. But the error level of each ball may be adaptively adjusted according to the local curvature and density that can avoid holes generation during the simplification process. Finally, the simplified points are triangulated by Cocone algorithm for surface reconstruction. This algorithm has been applied to a set of large scanned models. Experimental results demonstrate that it can generate high-quality surface approximation with feature preservation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Linsen, L.: Point cloud representation. CS Technical Report 2001-3. Universitat Karlsruhe, Germany (2001)

    Google Scholar 

  2. Alexa, M., Behr, J., Cohen-Or, D., et al.: Point Set Surfaces. In: Proc. 12th IEEE Visualization Conf., San Diego, USA, pp. 21–28 (2001)

    Google Scholar 

  3. Dey, T.K., Giesen, J., Hudson, J.: Decimating samples for mesh simplification. In: Proc. of 13th Canadian Conference on Computational Geometry, pp. 85–88 (2001)

    Google Scholar 

  4. Alexa, M., Behr, J., Cohen-Or, D., et al.: Computer and rendering point set surface. IEEE Transaction on Visaulization and Computer Graphics 9(1), 3–15 (2003)

    Article  Google Scholar 

  5. Scheidegger, C., Fleishman, S., Silva, C.: Triangulating point set surfaces with bounded error. In: Eurographics Symposium on Geometry Processing, pp. 63–72 (2005)

    Google Scholar 

  6. Kalaiah, A., Varshney, A.: Modeling and rendering of points with local geometry. IEEE Trans. Vis. Comput Graphics 9(1), 30–42 (2003)

    Article  Google Scholar 

  7. Lee, K., Woo, H., Suk, T.: Point data reduction using 3D grids. The International Journal of Advanced Manufacturing Technology 18(3), 201–210 (2001)

    Article  Google Scholar 

  8. Miao, Y., Pajarola, R., Feng, J.: Curvature-aware adaptive re-sampling for point- sampled geometry. Computer-Aided Design 41(6), 395–403 (2009)

    Article  Google Scholar 

  9. Boissonnat, J.D., Cazals, F.: Coarse-to-fine surface simplification with geometric guarantees. In: Proc. of EUROGRAPHICS, pp. 490–499 (2001)

    Google Scholar 

  10. Moenning, C., Dodgson, N.A.: Intrinsic point cloud simplification. In: Proc. of 14th GrahiCon (2004)

    Google Scholar 

  11. Wu, J., Kobbelt, L.P.: Optimized sub-sampling of point sets for surface splatting. In: Proc. of EUROGRAPHICS, pp. 643–652 (2000)

    Google Scholar 

  12. Pauly, M., Gross, M., Kobbelt, L.P.: Eifficient simplifiction of point-sampled surfaces. In: Proc. of IEEE Visualization, pp. 163–170 (2002)

    Google Scholar 

  13. Yu, Z., Wong, H., Peng, H., et al.: An adaptive simplification method for 3D point-based models. Computer-Aided Design 42(7), 598–612 (2010)

    Article  Google Scholar 

  14. Shi, B., Liang, J., Liu, Q.: Adaptive simplification of point cloud using k-means clustering. Computer-Aided Design 43(8), 910–922 (2011)

    Article  Google Scholar 

  15. Song, H., Feng, H.: A global clustering approach to point cloud simplification with a specified data reduction ratio. Computer-Aided Design 40(3), 281–292 (2008)

    Article  Google Scholar 

  16. Garland, M., Heckbert, P.: Surface simplification using quadric error metrics. In: Proc. of SIGGRAPH, pp. 209–216 (1997)

    Google Scholar 

  17. Wang, R., Hang, S., Ye, X.: A novel simplification algorithm for point-sampled surfaces. In: International Conference on Multimedia and Ubiquitous Engineering, pp. 573–578 (2007)

    Google Scholar 

  18. Lee, P., Jong, B.: Point-based Simplification Algorithm. WSEAS Transactions on Computer Research 3(1), 61–66 (2008)

    Google Scholar 

  19. Jong, B., Lee, P.: Hierarchical Point Simplification Using Coplanar Criterion. In: Tseng 2006 IEEE Region 10 Conference, pp. 1–4 (2006)

    Google Scholar 

  20. Ohtake, Y., Belyaev, A., Seidel, H.-P.: An integration approach to meshing scattered point data. In: ACM Symposium on Solid and Physical Modeling, pp. 61–69 (2005)

    Google Scholar 

  21. Dey, T.K., Goswami, S.: Tight Cocone: a water tight surface reconstruction reconstructor. In: Proc. of 8th ACM Sympos. Solid Modeling Appl., pp. 127–134 (2003)

    Google Scholar 

  22. Tagliasacchi, A., Zhang, H., Cohen-Or, D.: Curve skeleton extraction from incomplete point cloud. ACM Transactions on Graphics 28(3), 1–9 (2009)

    Article  Google Scholar 

  23. Nehab, D., Rusinkiewicz, S., Davis, J., et al.: Efficiently combining positions and normals for precise 3D geometry. ACM Transactions on Graphics 25(3), 560–568 (2005)

    Google Scholar 

  24. Hoppe, H., DeRose, T., Duchamp, T., et al.: Surface reconstruction from unorganized points. In: Proc. of SIGGRAPH, pp. 71–79 (1992)

    Google Scholar 

  25. Wu, J., Wei, M., Li, Y., et al.: Scale-adaptive surface modeling of vascuar structures. BioMedical Engineering Online 9, 75 (2010)

    Article  Google Scholar 

  26. Koenderink, J.: What does the occluding contour tell us about solid shape? Perception 13, 321–330 (1984)

    Article  Google Scholar 

  27. Gooch, B., Sloan, P.J., Gooch, A., et al.: Interactive technical illustraction. In: Proc. ACM Symposium on 3D Interactive Graphics, pp. 31–38 (1999)

    Google Scholar 

  28. Hertzmann, A., Zorin, D.: Illustrating smooth surfaces. In: Proc. of SIGGRAPH, pp. 517–526 (2000)

    Google Scholar 

  29. Heckbert, P.S., Garland, M.: Optimal triangulation and quadric-based surface simplification. Computational Geometry: Theroy and Application 14(1-3), 49–65 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Y., Wei, M., Wu, J., Pang, M. (2012). Error-Controllable Simplification of Point Cloud. In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science XVI. Lecture Notes in Computer Science, vol 7380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32663-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32663-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32662-2

  • Online ISBN: 978-3-642-32663-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics