Skip to main content

A Particle Swarm Embedding Algorithm for Nonlinear Dimensionality Reduction

  • Conference paper
Swarm Intelligence (ANTS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7461))

Included in the following conference series:

Abstract

To cope with high-dimensional data dimensionality reduction has become an increasingly important problem class. In this paper we propose an iterative particle swarm embedding algorithm (PSEA) that learns embeddings of low-dimensional representations for high-dimensional input patterns. The iterative method seeks for the best latent position with a particle swarm-inspired approach. The construction can be accelerated with k-d-trees. The quality of the embedding is evaluated with the nearest neighbor data space reconstruction error, and a co-ranking matrix based measure. Experimental studies show that PSEA achieves competitive or even better embeddings like the related methods locally linear embedding, and ISOMAP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, A., Grosan, C., Ramos, V. (eds.): Swarm Intelligence in Data Mining. SCI, vol. 34. Springer (2006)

    Google Scholar 

  2. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Communications of the ACM 18(9), 509–517 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gieseke, F., Polsterer, K.L., Thom, A., Zinn, P., Bomanns, D., Dettmar, R.-J., Kramer, O., Vahrenhold, J.: Detecting quasars in large-scale astronomical surveys. In: International Conference on Machine Learning and Applications (ICMLA), pp. 352–357 (2010)

    Google Scholar 

  4. Herrmann, L., Ultsch, A.: The Architecture of Ant-Based Clustering to Improve Topographic Mapping. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 379–386. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Jolliffe, I.: Principal component analysis. Springer series in statistics. Springer, New York (1986)

    Book  Google Scholar 

  6. Kao, Y., Cheng, K.: An ACO-Based Clustering Algorithm. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 340–347. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  8. Kohonen, T.: Self-Organizing Maps. Springer (2001)

    Google Scholar 

  9. Kramer, O.: Dimensionalty reduction by unsupervised nearest neighbor regression. In: International Conference on Machine Learning and Applications (ICMLA), pp. 275–278. IEEE (2011)

    Google Scholar 

  10. Kramer, O.: On unsupervised nearest-neighbor regression and robust loss functions. In: International Conference on Artificial Intelligence, pp. 164–170 (2012)

    Google Scholar 

  11. Lawrence, N.D.: Probabilistic non-linear principal component analysis with gaussian process latent variable models. Journal of Machine Learning Research 6, 1783–1816 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Lee, J.A., Verleysen, M.: Quality assessment of dimensionality reduction: Rank-based criteria. Neurocomputing 72(7-9), 1431–1443 (2009)

    Article  Google Scholar 

  13. Meinicke, P.: Unsupervised Learning in a Generalized Regression Framework. PhD thesis, University of Bielefeld (2000)

    Google Scholar 

  14. Meinicke, P., Klanke, S., Memisevic, R., Ritter, H.: Principal surfaces from unsupervised kernel regression. IEEE Transactions on Pattern Analysis and Maching Intelligence 27(9), 1379–1391 (2005)

    Article  Google Scholar 

  15. O’Neill, M., Brabazon, A.: Self-organizing swarm (SOSwarm) for financial credit-risk assessment (2008)

    Google Scholar 

  16. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  17. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the International Conference on Evolutionary Computation, pp. 69–73 (1998)

    Google Scholar 

  18. Smola, A.J., Mika, S., Schölkopf, B., Williamson, R.C.: Regularized principal manifolds. Journal of Machine Learning Research 1, 179–209 (2001)

    MATH  Google Scholar 

  19. Tan, S., Mavrovouniotis, M.: Reducing data dimensionality through optimizing neural network inputs. AIChE Journal 41(6), 1471–1479 (1995)

    Article  Google Scholar 

  20. Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kramer, O. (2012). A Particle Swarm Embedding Algorithm for Nonlinear Dimensionality Reduction. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2012. Lecture Notes in Computer Science, vol 7461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32650-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32650-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32649-3

  • Online ISBN: 978-3-642-32650-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics