Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSCOMPUTAT))

  • 987 Accesses

Abstract

In this chapter, the data for equivalent von Mises stress (EQV) and resultant displacement generated within bones and prosthetic components are presented and discussed for both intrasinus and extramaxillary approaches in different occlusal loading directions. There are four different occlusal loading inclinations have been considered, 0 (L3a), 15 (L3b), 30 (L3c) and 45° (L3d), respected to the standard implant axis. The results of analysis have also been compared with the EQV and resultant displacement data obtained by the vertical occlusal loading (L3), at similar loading location. Results showed that the oblique occlusal loading with horizontal components produced higher magnitude of stress or displacement than the pure vertical loading. The bones and prosthetic components exhibited higher stress magnitude for the intrasinus approach compared to the extramaxillary under almost all loading inclinations. However, the results of displacement showed otherwise where the framework and implants in the extramaxillary generated higher displacement values than those in the intrasinus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Javed F, Romanos GE (2010) The role of primary stability for successful immediate loading of dental implants. A literature review. J Dent 38(8):612–620

    Article  Google Scholar 

  2. Faegh S, Müftü S (2010) Load transfer along the bone-dental implant interface. J Biomech 43(9):1761–1770

    Article  Google Scholar 

  3. Maló P, de Araujo NM, Lopes I (2008) A new approach to rehabilitate the severely atrophic maxilla using extramaxillary anchored implants in immediate function: A pilot study. J Prosthet Dent 100(5):354–366

    Article  Google Scholar 

  4. Koca OL, Eskitascioglu G, Usumez A (2005) Three-dimensional finite-element analysis of functional stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor. J Prosthet Dent 93(1):38–44

    Article  Google Scholar 

  5. Bilhan H (2008) An alternative method to treat a case with severe maxillary atrophy by the use of angled implants instead of complicated augmentation procedures: a case report. J Oral Implantol 34(1):47–51

    Article  Google Scholar 

  6. Miyamoto S, Ujigawa K, Kizu Y, Tonogi M, Yamane GY (2010) Biomechanical three-dimensional finite-element analysis of maxillary prostheses with implants. Design of number and position of implants for maxillary prostheses after hemimaxillectomy. Int J Oral Maxillofac Surg 39(11):1120–1126

    Article  Google Scholar 

  7. Lin CL, Lin YH, Chang SH (2010) Multi-factorial analysis of variables influencing the bone loss of an implant placed in the maxilla: Prediction using FEA and SED bone remodeling algorithm. J Biomech 43(4):644–651

    Article  Google Scholar 

  8. Danza M, Zollino I, Paracchini L, Riccardo G, Fanali S, Carinci F (2009) 3D finite element analysis to detect stress distribution: spiral family implants. J Maxillofac Oral Surg 8(4):334–339

    Article  Google Scholar 

  9. Barão VAR, Assunção WG, Tabata LF, de Sousa EAC, Rocha EP (2008) Effect of different mucosa thickness and resiliency on stress distribution of implant-retained overdentures-2D FEA. Comput Meth Prog Bio 92(2):213–223

    Article  Google Scholar 

  10. Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo G (2008) The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: A three-dimensional finite element analysis. J Prosthet Dent 100(6):422–431

    Article  Google Scholar 

  11. Geng J, Yan W, Xu W (2008) Application of the finite element method in implant dentistry. Zhejiang University Press, Springer, China

    Book  Google Scholar 

  12. Saab XE, Griggs JA, Powers JM, Engelmeier RL (2007) Effect of abutment angulation on the strain on the bone around an implant in the anterior maxilla: a finite element study. J Prosthet Dent 97(2):85–92

    Article  Google Scholar 

  13. Misch CE (1999) Implant design considerations for the posterior regions of the mouth. Implant Dent 8(4):376–386

    Article  Google Scholar 

  14. Papavasiliou G, Kamposiora P, Bayne SC, Felton DA (1996) Three-dimensional finite element analysis of stress-distribution around single tooth implants as a function of bony support, prosthesis type, and loading during function. J Prosthet Dent 76(6):633–640

    Article  Google Scholar 

  15. Geng JP, Xu W, Tan KBC, Liu GR (2004) Finite element analysis of an osseointegrated stepped screw dental implant. J Oral Implantol 30(4):223–233

    Article  Google Scholar 

  16. Ujigawa K, Kato Y, Kizu Y, Tonogi M, Yamane GY (2007) Three-dimensional finite elemental analysis of zygomatic implants in craniofacial structures. Int J Oral Maxillofac Surg 36(7):620–625

    Article  Google Scholar 

  17. Yoshino M, Kato Y, Kizu Y, Tonogi M, Abe S, Ide Y, Yamane G-Y (2007) Study on internal structure of zygomatic bone using micro-finite element analysis model differences between dentulous and edentulous dentition in Japanese cadavers. Bull Tokyo Dent Coll 48(3):129–134

    Article  Google Scholar 

  18. Block MS, Haggerty CJ, Fisher GR (2009) Nongrafting implant options for restoration of the edentulous maxilla. J Oral Maxillofac Surg 67:872–881

    Article  Google Scholar 

  19. Malevez C, Daelemans P, Adriaenssens P, Durdu F (2003) Use of zygomatic implants to deal with resorbed posterior maxillae. Periodontol 2000 33(1):82–89

    Article  Google Scholar 

  20. Gross MD, Arbel G, Hershkovitz I (2001) Three-dimensional finite element analysis of the facial skeleton on simulated occlusal loading. J Oral Rehabil 28(7):684–694

    Article  Google Scholar 

  21. KayabasI O, YüzbasIoglu E, ErzincanlI F (2006) Static, dynamic and fatigue behaviors of dental implant using finite element method. Adv Eng Softw 37(10):649–658

    Article  Google Scholar 

  22. Weinberg LA (2001) Therapeutic biomechanics concepts and clinical procedures to reduce implant loading. Part I. J Oral Implantol 27(6):293–301

    Article  MathSciNet  Google Scholar 

  23. Hirsch JM, Ohrnell LO, Henry PJ, Andreasson L, Branemark PI, Chiapasco M, Gynther G, Finne K, Higuchi KW, Isaksson S, Kahnberg KE, Malevez C, Neukam FW, Sevetz E, Urgell JP, Widmark G, Bolind P (2004) A clinical evaluation of the zygoma fixture: one year of follow-up at 16 clinics. J Oral Maxillofac Surg 62(9 Suppl 2):22–29

    Article  Google Scholar 

  24. Nkenke E, Hahn M, Lell M, Wiltfang J, Schultze Mosgau S, Stech B et al (2003) Anatomic site evaluation of the zygomatic bone for dental implant placement. Clin Oral Impl Res 14:72–79

    Article  Google Scholar 

  25. Stiévenart M, Malevez C (2010) Rehabilitation of totally atrophied maxilla by means of four zygomatic implants and fixed prosthesis: a 6–40-month follow-up. Int J Oral Maxillofac Surg 39(4):358–363

    Article  Google Scholar 

  26. Corvello PC, Montagner A, Batista FC, Smidt R, Shinkai RS (2011) Length of the drilling holes of zygomatic implants inserted with the standard technique or a revised method: A comparative study in dry skulls. J Cranio Maxill Surg 39(2):119–123

    Article  Google Scholar 

  27. Hayashi K, Sato J, Hukusima Y, Matsuura M, Seto K (1999) Application of zygomatic implants to patients presenting difficulties in achieving denture stability. Int J Oral Maxillofac Surg 28(Supplement 1):160

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ikman Ishak .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Ishak, M.I., Abdul Kadir, M.R. (2013). Bone and Prosthetic Component Responses in Various Occlusal Loading Directions. In: Biomechanics in Dentistry: Evaluation of Different Surgical Approaches to Treat Atrophic Maxilla Patients. SpringerBriefs in Applied Sciences and Technology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32603-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32603-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32602-8

  • Online ISBN: 978-3-642-32603-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics