Skip to main content

Effects of Alterations in Gait Mechanics on the Development of Osteoarthritis in the ACL-Deficient Knee

  • Chapter
  • First Online:
ACL Injuries in the Female Athlete

Abstract

In this chapter, the kinematic and kinetic changes in the knee after ACL injury are discussed. Human motion analysis supports the observation that altered rotational positions in the ACL-deficient knee lead to changes in tibiofemoral contact during walking. The interaction between altered joint kinematics and the structural and biological components of articular cartilage are explored as an initiating mechanism of premature cartilage degradation following ACL injury. This mechanism provides a framework for studying OA that unifies kinematic and biological investigations and should form the development of techniques to prevent the initiation and progression of OA in the ACL-injured population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abebe ES, Utturkar GM, Taylor DC et al (2011) The effects of femoral graft placement on in vivo knee kinematics after anterior cruciate ligament reconstruction. J Biomech 44(5):924–929

    Article  PubMed  CAS  Google Scholar 

  2. Ahmed AM, Burke DL (1983) In-vitro measurement of static pressure distribution in synovial joints – part I: tibial surface of the knee. J Biomech Eng 105(3):216–225

    Article  PubMed  CAS  Google Scholar 

  3. Ait Si Selmi T, Fithian D, Neyret P (2006) The evolution of osteoarthritis in 103 patients with ACL reconstruction at 17 years follow-up. Knee 13(5):353–358

    Article  PubMed  CAS  Google Scholar 

  4. Andriacchi TP, Mundermann A, Smith RL et al (2004) A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann Biomed Eng 32(3):447–457

    Article  PubMed  Google Scholar 

  5. Andriacchi TP, Dyrby CO (2005) Interactions between kinematics and loading during walking for the normal and ACL deficient knee. J Biomech 38(2):293–298

    Article  PubMed  Google Scholar 

  6. Andriacchi TP, Mundermann A (2006) The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis. Curr Opin Rheumatol 18(5):514–518

    Article  PubMed  Google Scholar 

  7. Andriacchi TP, Koo S, Scanlan SF (2009) Gait mechanics influence healthy cartilage morphology and osteoarthritis of the knee. J Bone Joint Surg Am 91(Suppl 1):95–101

    Article  PubMed  Google Scholar 

  8. Appleyard RC, Burkhardt D, Ghosh P et al (2003) Topographical analysis of the structural, biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritis. Osteoarthritis Cartilage 11(1):65–77

    Article  PubMed  CAS  Google Scholar 

  9. Barrance PJ, Williams GN, Snyder-Mackler L et al (2006) Altered knee kinematics in ACL-deficient non-copers: a comparison using dynamic MRI. J Orthop Res 24(2):132–140

    Article  PubMed  Google Scholar 

  10. Bedi A, Raphael B, Maderazo A et al (2010) Transtibial versus anteromedial portal drilling for anterior cruciate ligament reconstruction: a cadaveric study of femoral tunnel length and obliquity. Arthroscopy 26(3):342–350

    Article  PubMed  Google Scholar 

  11. Behrens F, Kraft EL, Oegema TR Jr (1989) Biochemical changes in articular cartilage after joint immobilization by casting or external fixation. J Orthop Res 7(3):335–343

    Article  PubMed  CAS  Google Scholar 

  12. Bevill SL, Briant PL, Levenston ME et al (2009) Central and peripheral region tibial plateau chondrocytes respond differently to in vitro dynamic compression. Osteoarthritis Cartilage 17(8):980–987

    Article  PubMed  CAS  Google Scholar 

  13. Bullough PG, Yawitz PS, Tafra L et al (1985) Topographical variations in the morphology and biochemistry of adult canine tibial plateau articular cartilage. J Orthop Res 3(1):1–16

    Article  PubMed  CAS  Google Scholar 

  14. Buschmann MD, Kim YJ, Wong M et al (1999) Stimulation of aggrecan synthesis in cartilage explants by cyclic loading is localized to regions of high interstitial fluid flow. Arch Biochem Biophys 366(1):1–7

    Article  PubMed  CAS  Google Scholar 

  15. Chaganti RK, Lane NE (2011) Risk factors for incident osteoarthritis of the hip and knee. Curr Rev Musculoskelet Med 4(3):99–104

    Article  PubMed  Google Scholar 

  16. Chaudhari AM, Briant PL, Bevill SL et al (2008) Knee kinematics, cartilage morphology, and osteoarthritis after ACL injury. Med Sci Sports Exerc 40(2):215–222

    Article  PubMed  Google Scholar 

  17. Chowdhury TT, Bader DL, Lee DA (2006) Dynamic compression counteracts IL-1beta induced iNOS and COX-2 activity by human chondrocytes cultured in agarose constructs. Biorheology 43(3–4):413–429

    PubMed  Google Scholar 

  18. Clark JM (1991) Variation of collagen fiber alignment in a joint surface: a scanning electron microscope study of the tibial plateau in dog, rabbit, and man. J Orthop Res 9(2):246–257

    Article  PubMed  CAS  Google Scholar 

  19. Daniel DM, Stone ML, Dobson BE et al (1994) Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med 22(5):632–644

    Article  PubMed  CAS  Google Scholar 

  20. Das P, Schurman DJ, Smith RL (1997) Nitric oxide and G proteins mediate the response of bovine articular chondrocytes to fluid-induced shear. J Orthop Res 15(1):87–93

    Article  PubMed  CAS  Google Scholar 

  21. Defrate LE, Papannagari R, Gill TJ et al (2006) The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am J Sports Med 34(8):1240–1246

    Article  PubMed  Google Scholar 

  22. Deschner J, Hofman CR, Piesco NP et al (2003) Signal transduction by mechanical strain in chondrocytes. Curr Opin Clin Nutr Metab Care 6(3):289–293

    PubMed  CAS  Google Scholar 

  23. Deschner J, Rath-Deschner B, Agarwal S (2006) Regulation of matrix metalloproteinase expression by dynamic tensile strain in rat fibrochondrocytes. Osteoarthritis Cartilage 14(3):264–272

    Article  PubMed  CAS  Google Scholar 

  24. Durrant LA, Archer CW, Benjamin M et al (1999) Organisation of the chondrocyte cytoskeleton and its response to changing mechanical conditions in organ culture. J Anat 194(Pt 3):343–353

    Article  PubMed  Google Scholar 

  25. Eggli PS, Hunziker EB, Schenk RK (1988) Quantitation of structural features characterizing weight- and less-weight-bearing regions in articular cartilage: a stereological analysis of medial femoral condyles in young adult rabbits. Anat Rec 222(3):217–227

    Article  PubMed  CAS  Google Scholar 

  26. Elder SH, Goldstein SA, Kimura JH et al (2001) Chondrocyte differentiation is modulated by frequency and duration of cyclic compressive loading. Ann Biomed Eng 29(6):476–482

    Article  PubMed  CAS  Google Scholar 

  27. Erhart JC, Dyrby CO, D’Lima DD et al (2010) Changes in in vivo knee loading with a variable-stiffness intervention shoe correlate with changes in the knee adduction moment. J Orthop Res 28(12):1548–1553

    Article  PubMed  Google Scholar 

  28. Fedewa MM, Oegema TR Jr, Schwartz MH et al (1998) Chondrocytes in culture produce a mechanically functional tissue. J Orthop Res 16(2):227–236

    Article  PubMed  CAS  Google Scholar 

  29. Forster H, Fisher J (1999) The influence of continuous sliding and subsequent surface wear on the friction of articular cartilage. Proc Inst Mech Eng H 213(4):329–345

    Article  PubMed  CAS  Google Scholar 

  30. Freeman PM, Natarajan RN, Kimura JH et al (1994) Chondrocyte cells respond mechanically to compressive loads. J Orthop Res 12(3):311–320

    Article  PubMed  CAS  Google Scholar 

  31. Fujisawa T, Hattori T, Takahashi K et al (1999) Cyclic mechanical stress induces extracellular matrix degradation in cultured chondrocytes via gene expression of matrix metalloproteinases and interleukin-1. J Biochem 125(5):966–975

    Article  PubMed  CAS  Google Scholar 

  32. Fukubayashi T, Torzilli PA, Sherman MF (1982) An in vitro biomechanical evaluation of anterior-posterior motion of the knee. Tibial displacement, rotation, and torque. J Bone Joint Surg Am 64A(2):258–264

    Google Scholar 

  33. Georgoulis AD, Papadonikolakis A, Papageorgiou CD et al (2003) Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking. Am J Sports Med 31(1):75–79

    PubMed  Google Scholar 

  34. Guilak F, Ratcliffe A, Lane N et al (1994) Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis. J Orthop Res 12(4):474–484

    Article  PubMed  CAS  Google Scholar 

  35. Hasler EM, Herzog W, Leonard TR et al (1998) In vivo knee joint loading and kinematics before and after ACL transection in an animal model. J Biomech 31(3):253–262

    Article  PubMed  CAS  Google Scholar 

  36. Ikenoue T, Trindade MC, Lee MS et al (2003) Mechanoregulation of human articular chondrocyte aggrecan and type II collagen expression by intermittent hydrostatic pressure in vitro. J Orthop Res 21(1):110–116

    Article  PubMed  CAS  Google Scholar 

  37. Kannus P, Jarvinen M (1989) Posttraumatic anterior cruciate ligament insufficiency as a cause of osteoarthritis in a knee joint. Clin Rheumatol 8(2):251–260

    Article  PubMed  CAS  Google Scholar 

  38. Kiviranta I, Jurvelin J, Tammi M et al (1987) Weight bearing controls glycosaminoglycan concentration and articular cartilage thickness in the knee joints of young beagle dogs. Arthritis Rheum 30(7):801–809

    Article  PubMed  CAS  Google Scholar 

  39. Kiviranta I, Tammi M, Jurvelin J et al (1988) Moderate running exercise augments glycosaminoglycans and thickness of articular cartilage in the knee joint of young beagle dogs. J Orthop Res 6(2):188–195

    Article  PubMed  CAS  Google Scholar 

  40. Knight MM, Ross JM, Sherwin AF et al (2001) Chondrocyte deformation within mechanically and enzymatically extracted chondrons compressed in agarose. Biochim Biophys Acta 1526(2):141–146

    Article  PubMed  CAS  Google Scholar 

  41. Koo S, Andriacchi TP (2007) A comparison of the influence of global functional loads vs. local contact anatomy on articular cartilage thickness at the knee. J Biomech 40(13):2961–2966

    Article  PubMed  Google Scholar 

  42. Koo S, Andriacchi TP (2008) The knee joint center of rotation is predominantly on the lateral side during normal walking. J Biomech 41(6):1269–1273

    Article  PubMed  Google Scholar 

  43. Kumm JA, Tamm, Lintrop M et al (2011) The prevalence and progression of radiographic knee osteoarthritis over 6 years in a population-based cohort of middle-aged subjects. Rheumatol Int.http://www.ncbi.nlm.nih.gov/pubmed/22083615. Epub ahead of print, Nov 16, 2011. DOI:10.1007/s00296-011-2221-3

  44. Lee DA, Bader DL (1997) Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J Orthop Res 15(2):181–188

    Article  PubMed  Google Scholar 

  45. Li G, Park SE, DeFrate LE (2005) The cartilage thickness distribution in the tibiofemoral joint and its correlation with cartilage-to-cartilage contact. Clin Biomech (Bristol, Avon) 20(7):736–744

    Article  Google Scholar 

  46. Li G, Moses JM, Papannagari R et al (2006) Anterior cruciate ligament deficiency alters the in vivo motion of the tibiofemoral cartilage contact points in both the anteroposterior and mediolateral directions. J Bone Joint Surg Am 88(8):1826–1834

    Article  PubMed  Google Scholar 

  47. Liphardt AM, Mundermann A, Koo S et al (2009) Vibration training intervention to maintain cartilage thickness and serum concentrations of cartilage oligometric matrix protein (COMP) during immobilization. Osteoarthritis Cartilage 17(12):1598–1603

    Article  PubMed  Google Scholar 

  48. Little CB, Ghosh P (1997) Variation in proteoglycan metabolism by articular chondrocytes in different joint regions is determined by post-natal mechanical loading. Osteoarthritis Cartilage 5(1):49–62

    Article  PubMed  CAS  Google Scholar 

  49. Liu W, Burton-Wurster N, Glant TT et al (2003) Spontaneous and experimental osteoarthritis in dog: similarities and differences in proteoglycan levels. J Orthop Res 21(4):730–737

    Article  PubMed  CAS  Google Scholar 

  50. Logan MC, Williams A, Lavelle J et al (2004) Tibiofemoral kinematics following successful anterior cruciate ligament reconstruction using dynamic multiple resonance imaging. Am J Sports Med 32(4):984–992

    Article  PubMed  Google Scholar 

  51. Lohmander LS, Ostenberg A, Englund M et al (2004) High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 50(10):3145–3152

    Article  PubMed  CAS  Google Scholar 

  52. Maletius W, Messner K (1999) Eighteen- to twenty-four-year follow-up after complete rupture of the anterior cruciate ligament. Am J Sports Med 27(6):711–717

    PubMed  CAS  Google Scholar 

  53. Maniwa S, Nishikori T, Furukawa S et al (2001) Alteration of collagen network and negative charge of articular cartilage surface in the early stage of ­experimental osteoarthritis. Arch Orthop Trauma Surg 121(4):181–185

    Article  PubMed  CAS  Google Scholar 

  54. Markolf KL, Mensch JS, Amstutz HC (1976) Stiffness and laxity of the knee – the contributions of the supporting structures. A quantitative in vitro study. J Bone Joint Surg Am 58(5):583–594

    PubMed  CAS  Google Scholar 

  55. Meuffels DE, Favejee MM, Vissers MM et al (2009) Ten year follow-up study comparing conservative versus operative treatment of anterior cruciate ligament ruptures. A matched-pair analysis of high level athletes. Br J Sports Med 43(5):347–351

    Article  PubMed  CAS  Google Scholar 

  56. Mow VC, Kuei SC, Lai WM et al (1980) Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng 102(1):73–84

    Article  PubMed  CAS  Google Scholar 

  57. Netravali NA, Giori NJ, Andriacchi TP (2010) Partial medial meniscectomy and rotational differences at the knee during walking. J Biomech 43(15):2948–2953

    Article  PubMed  Google Scholar 

  58. Nguyen US, Zhang Y, Zhu Y et al (2011) Increasing prevalence of knee pain and symptomatic knee osteoarthritis: survey and cohort data. Ann Intern Med 155(11):725–732

    PubMed  Google Scholar 

  59. Oiestad BE, Holm I, Aune AK et al (2010) Knee function and prevalence of knee osteoarthritis after anterior cruciate ligament reconstruction: a prospective study with 10 to 15 years of follow-up. Am J Sports Med 38(11):2201–2210

    Article  PubMed  Google Scholar 

  60. Pelletier JP, Mineau F, Faure MP et al (1990) Imbalance between the mechanisms of activation and inhibition of metalloproteases in the early lesions of experimental osteoarthritis. Arthritis Rheum 33(10):1466–1476

    Article  PubMed  CAS  Google Scholar 

  61. Quinn TM, Grodzinsky AJ, Buschmann MD et al (1998) Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants. J Cell Sci 111(Pt 5):573–583

    PubMed  CAS  Google Scholar 

  62. Quinn TM, Hunziker EB, Hauselmann HJ (2005) Variation of cell and matrix morphologies in articular cartilage among locations in the adult human knee. Osteoarthritis Cartilage 13(8):672–678

    Article  PubMed  Google Scholar 

  63. Ristanis S, Stergiou N, Siarava E et al (2009) Effect of femoral tunnel placement for reconstruction of the anterior cruciate ligament on tibial rotation. J Bone Joint Surg Am 91(9):2151–2158

    Article  PubMed  Google Scholar 

  64. Scanlan SF, Blazek K, Chaudhari AM et al (2009) Graft orientation influences the knee flexion moment during walking in patients with anterior cruciate ligament reconstruction. Am J Sports Med 37(11):2173–2178

    Article  PubMed  Google Scholar 

  65. Scanlan SF, Chaudhari AM, Dyrby CO et al (2010) Differences in tibial rotation during walking in ACL reconstructed and healthy contralateral knees. J Biomech 43(9):1817–1822

    Article  PubMed  Google Scholar 

  66. Scarvell JM, Smith PN, Refshauge KM et al (2005) Comparison of kinematics in the healthy and ACL injured knee using MRI. J Biomech 38(2):255–262

    Article  PubMed  Google Scholar 

  67. Schipplein OD, Andriacchi TP (1991) Interaction between active and passive knee stabilizers during level walking. J Orthop Res 9(1):113–119

    Article  PubMed  CAS  Google Scholar 

  68. Smith RL, Donlon BS, Gupta MK et al (1995) Effects of fluid-induced shear on articular chondrocyte morphology and metabolism in vitro. J Orthop Res 13(6):824–831

    Article  PubMed  CAS  Google Scholar 

  69. Smith RL, Trindade MC, Ikenoue T et al (2000) Effects of shear stress on articular chondrocyte metabolism. Biorheology 37(1):95–107

    CAS  Google Scholar 

  70. Sohn DH, Garrett WE Jr (2009) Transitioning to anatomic anterior cruciate ligament graft placement. J Knee Surg 22(2):155–160

    Article  PubMed  Google Scholar 

  71. Tashman S, Anderst W, Kolowich P et al (2004) Kinematics of the ACL-deficient canine knee during gait: serial changes over two years. J Orthop Res 22(5):931–941

    Article  PubMed  Google Scholar 

  72. Tashman S, Collon D, Anderson K et al (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32(4):975–983

    Article  PubMed  Google Scholar 

  73. Vanwanseele B, Eckstein F, Knecht H et al (2002) Knee cartilage of spinal cord-injured patients displays progressive thinning in the absence of normal joint loading and movement. Arthritis Rheum 46(8):2073–2078

    Article  PubMed  CAS  Google Scholar 

  74. Vanwanseele B, Eckstein F, Knecht H et al (2003) Longitudinal analysis of cartilage atrophy in the knees of patients with spinal cord injury. Arthritis Rheum 48(12):3377–3381

    Article  PubMed  CAS  Google Scholar 

  75. Videman T (1982) Experimental osteoarthritis in the rabbit: comparison of different periods of repeated immobilization. Acta Orthop Scand 53(3):339–347

    Article  PubMed  CAS  Google Scholar 

  76. Vilensky JA, O’Connor BL, Brandt KD et al (1994) Serial kinematic analysis of the unstable knee after transection of the anterior cruciate ligament: temporal and angular changes in a canine model of osteoarthritis. J Orthop Res 12(2):229–237

    Article  PubMed  CAS  Google Scholar 

  77. von Porat A, Roos EM, Roos H (2004) High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann Rheum Dis 63(3):269–273

    Article  Google Scholar 

  78. Wang H, Ateshian GA (1997) The normal stress effect and equilibrium friction coefficient of articular cartilage under steady frictional shear. J Biomech 30(8):771–776

    Article  PubMed  CAS  Google Scholar 

  79. Wilson W, Driessen NJ, van Donkelaar CC et al (2006) Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm. Osteoarthritis Cartilage 14(11):1196–1202

    Article  PubMed  CAS  Google Scholar 

  80. Wong M, Wuethrich P, Buschmann MD et al (1997) Chondrocyte biosynthesis correlates with local tissue strain in statically compressed adult articular cartilage. J Orthop Res 15(2):189–196

    Article  PubMed  CAS  Google Scholar 

  81. Yoshioka M, Coutts RD, Amiel D et al (1996) Characterization of a model of osteoarthritis in the rabbit knee. Osteoarthritis Cartilage 4(2):87–98

    Article  PubMed  CAS  Google Scholar 

  82. Zhao D, Banks SA, Mitchell KH et al (2007) Correlation between the knee adduction torque and medial contact force for a variety of gait patterns. J Orthop Res 25(6):789–797

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Maurice Manring, Ph.D. for his editorial assistance with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit M. W. Chaudhari Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chaudhari, A.M.W., Schmitt, L.C., Andriacchi, T.P. (2012). Effects of Alterations in Gait Mechanics on the Development of Osteoarthritis in the ACL-Deficient Knee. In: Noyes, F., Barber-Westin, S. (eds) ACL Injuries in the Female Athlete. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32592-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32592-2_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32591-5

  • Online ISBN: 978-3-642-32592-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics