Skip to main content

Categories of Coalgebraic Games

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7464))

Abstract

We consider a general notion of coalgebraic game, whereby games are viewed as elements of a final coalgebra. This allows for a smooth definition of game operations (e.g. sum, negation, and linear implication) as final morphisms. The notion of coalgebraic game subsumes different notions of games, e.g. possibly non-wellfounded Conway games and games arising in Game Semantics à la [AJM00]. We define various categories of coalgebraic games and (total) strategies, where the above operations become functorial, and induce a structure of monoidal closed or *-autonomous category. In particular, we define a category of coalgebraic games corresponding to AJM-games and winning strategies, and a generalization to non-wellfounded games of Joyal’s category of Conway games. This latter construction provides a categorical characterization of the equivalence by Berlekamp, Conway, Guy on loopy games.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramsky, S.: Semantics of Interaction: an introduction to Game Semantics. In: Dybjer, P., et al. (eds.) CLiCS 1996 School. Cambridge University Press (1997)

    Google Scholar 

  2. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Information and Computation 163, 404–470 (2000)

    Article  MathSciNet  Google Scholar 

  3. Aczel, P.: Non-wellfounded sets. CSLI Lecture Notes, Stanford, vol. 14 (1988)

    Google Scholar 

  4. Barwise, J., Moss, L.: Vicious Circles. CSLI Lecture Notes, Stanford, vol. 60 (1996)

    Google Scholar 

  5. van Benthem, J.: Extensive games as process models. Journal of Logic, Language and Information 11 (2002)

    Google Scholar 

  6. Berlekamp, E., Conway, J., Guy, R.: Winning Ways. Academic Press (1982)

    Google Scholar 

  7. Conway, J.H.: On Numbers and Games. A K Peters Ltd. (2001)

    Google Scholar 

  8. Forti, M., Honsell, F.: Set-theory with free construction principles. Ann. Scuola Norm. Sup. Pisa, Cl. Sci. 10(4), 493–522 (1983)

    MathSciNet  MATH  Google Scholar 

  9. Honsell, F., Lenisa, M.: Conway Games, algebraically and coalgebraically. Logical Methods in Computer Science 7(3) (2011)

    Google Scholar 

  10. Honsell, F., Lenisa, M., Redamalla, R.: Equivalences and Congruences on Infinite Conway Games. In: Theoretical Informatics and Applications (2012)

    Google Scholar 

  11. Hyland, M., Schalk, A.: Games on Graphs and Sequentially Realizable Functionals. In: LICS 2002, pp. 257–264. IEEE Computer Science Press (2002)

    Google Scholar 

  12. Joyal, A.: Remarques sur la Theorie des Jeux a deux personnes. Gazette des Sciences Mathematiques du Quebec 1(4) (1977)

    Google Scholar 

  13. Mellies, P.A.: Categorical semantics of linear logic. In: Panoramas et Synthéses, vol. 27, Société Mathématique de France (2009)

    Google Scholar 

  14. Melliès, P.-A., Tabareau, N., Tasson, C.: An Explicit Formula for the Free Exponential Modality of Linear Logic. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 247–260. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Pauly, M.: From Programs to Games: Invariance and Safety for Bisimulation. In: CSL 2009, pp. 485–496 (2009)

    Google Scholar 

  16. Santocanale, L.: Free μ-lattices. J. Pure Appl. Algebra 168, 227–264 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Honsell, F., Lenisa, M., Redamalla, R. (2012). Categories of Coalgebraic Games. In: Rovan, B., Sassone, V., Widmayer, P. (eds) Mathematical Foundations of Computer Science 2012. MFCS 2012. Lecture Notes in Computer Science, vol 7464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32589-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32589-2_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32588-5

  • Online ISBN: 978-3-642-32589-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics