Skip to main content

Modelling and Composed Recursive Model Free Control for the Anaerobic Digestion Process

  • Chapter
Advances in Intelligent Control Systems and Computer Science

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 187))

Abstract

This paper presents a modelling and new composite recursive model free controller for trajectory tracking and disturbance compensation for the Anaerobic Digestion Process of cattle dung. The used model is on the basis of a fifth-order continuous anaerobic digestion model. And the proposed controller comprises a recursive model free controller based stabilization component and a time delay control based compensation component with recursive calculation structure which does not require any knowledge of the model parameters. Computer simulation examples illustrate the performance and robustness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steyer, J.P., Estaben, M., Polit, M.: Fuzzy Control of an Anaerobic Digestion Process for the Treatment of an Industrial Wasterwater. In: Proc. 6th IEEE Inter. Conf., Fuzzy Systems, Barcelona, pp. 1245–1249 (1997)

    Google Scholar 

  2. Simeonov, I., Queinnec, I.: Linearizing control of the anaerobic digestion with addition of acetate (control of the anaerobic digestion). Control Eng. Practice 14, 799–810 (2006)

    Article  Google Scholar 

  3. Diop, S., Simeonov, I.: A differential algebraic approach to anaerobic digestion estimation problems. In: Proc. 14th Mediterranean Conf. on Control and Automation, Ancona, pp. 1–5 (2006)

    Google Scholar 

  4. Deublein, D., Steinhauser, A.: Biogas from waste and renewable resources. An introduction. Wiley-VCH, Weinheim (2008)

    Book  Google Scholar 

  5. Harmon, J., Pullamanapallil, P., Lyberatos, G., Svoronos, S.A.: Stabilization of a Continuous Glucose-Fed Anaerobic Digester via Feed Rate Control. In: Proc. Amer. Contr. Conf., pp. 2156–2160 (1990)

    Google Scholar 

  6. Pullammanappallil, P., Svoronons, S.A., Lyberatos, G.: Optimal Response of Anaerobic Digesters to Inhibitors Entering with the Feed. In: Proc. Amer. Contr. Conf., Boston, pp. 1341–1342 (1990)

    Google Scholar 

  7. Bastin, G., Dochain, D.: Non linear adaptive control algorithems for fermentation process. In: Proc. Amer. Contr. Conf., Atlanta, pp. 1124–1128 (1988)

    Google Scholar 

  8. Dochain, D.: Multivariable Adaptive Control of Nonlinear Completely Mixed Bioreactors. In: Proc. Amer. Contr. Conf., San Diego, pp. 2661–2666 (1990)

    Google Scholar 

  9. Petre, E., Selisteanu, D., Sendrescu, D.: Adaptive control strategies for a class of anaerobic depollution bioprocesses. In: Proc. IEEE Int. Conf. Automation, Quality and Testing, Robotics, Cluj-Napoca, pp. 159–164 (2008)

    Google Scholar 

  10. Antonelli, R., Harmand, J., Steyer, J.P., Astolfi, A.: Set-point regulation of an anaerobic digestion process with bounded output feedback. IEEE Trans. Contr. Syst. Technol. 11, 495–504 (2003)

    Article  Google Scholar 

  11. Simeonov, I., Chorukova, E.: Neural networks modelling of two biotechnological processes. In: Proc. Second IEEE Int. Conf. Intelligent Systems, pp. 331–336 (2004)

    Google Scholar 

  12. Galvan-Guerra, R., Baruch, I.S.: Anaerobic digestion process identification using recurrent neural network model. In: Proc. Sixth Mexican Int. Conf. Artifical Intelligence, Aguascallentes, pp. 319–329 (2008)

    Google Scholar 

  13. Carlos-Hernandez, S., Mallet, G., Beteau, J.F., Sanchez, E.N.: A TS Fuzzy Observer for an anaerobic fluidized Bed. In: Proc. 2006 IEEE Inter. Conf. Fuzzy Systems, Vancouver, pp. 2299–2304 (2006)

    Google Scholar 

  14. Garrett, M.T.: Hydraulic control of activated sludge growth rate. Sewage & Ind. Wasters 30, 253–261 (1958)

    Google Scholar 

  15. Beck, M.B.: Identification, estimation and control of biological wasterwater treatment processes. IEE Proc. 133, 254–264 (1986)

    MATH  Google Scholar 

  16. Loeser, M., Redfern, M.A.: Overview of biomass conversion and generation technologies. In: Proc. 43rd Int. Universities Power Eng. Conf., Padova (2008)

    Google Scholar 

  17. Loeser, M., Redfern, M.A.: How small can micro-scale generation be? In: IEEE Electrical Power & Energy Conf. on Size Analysis of a Novel Biomass Power Plant, pp. 1–6 (2009)

    Google Scholar 

  18. Curry, N., Pillay, P.: Converting food waste to usable energy in the urban environment through anaerobic digestion. In: Proc. 2009 IEEE Electrical Power & Energy Conf., Montreal, pp. 1–4 (2009)

    Google Scholar 

  19. Dochain, D., Vanrolleghem, P.A.V.: Dynamical modeling and estimation in wasterwater treatement process. IWA Publ., London (2001)

    Google Scholar 

  20. Simeonov, I.: Dynamical modeling and estimation in wasterwater treatement process. In: Tzonkov, S. (ed.) ch. 2. Prof. M. Drinov Acad. Publ. House, Sofia (2010)

    Google Scholar 

  21. Koncar, V., Vasseur, C.: Control of linear systems using piecewise continuous systems. IEE Control Theory & Appl. 150, 565–576 (2003)

    Article  Google Scholar 

  22. Wang, H.P., Vasseur, C., Koncar, V.: Piecewise continuous systems used in trajectory tracking of a vision based x-y robot. In: Novel Algorithms and Techniques Telecommunications, Automation and Industrial Electronics, pp. 255–260. Springer, Netherlands (2008)

    Google Scholar 

  23. Wang, H.P., Vasseur, C., Koncar, V., Chamroo, A., Christov, N.: Design and implementation of robust hybrid control of vision based underactuated mechanical nonminimum phase system. Studies in Informatics and Control 19, 35–44 (2010)

    Google Scholar 

  24. Wang, H.P.: Observation et commande par systèmes à fonctionnement par morceaux. Editions Universitaires Européennes, Sarrebruck, Allemagne (2011)

    Google Scholar 

  25. Youcef-Toumi, K., Fuhlbrigge, T.A.: Application of decentralized time delay controller to robot manipulators. In: Proc. IEEE Int. Conf. on Robotics and Automation, Scottsdale, pp. 1786–1791 (1989)

    Google Scholar 

  26. Youcef-Toumi, K., Shortlidge, C.C.: Control of robot manipulators using time delay. In: Proc. IEEE Int. Conf. on Robotics and Automation, Sacrament, pp. 2391–2398 (1991)

    Google Scholar 

  27. Cho, G.P., Chang, P.H., Park, S.H.: Robust Trajectory Control of Robot Manipulators Using Time Delay Estimation and Internal Model Concept. In: Proc. of 44th IEEE Conf. Decision and Control, and the European Control Conference (2005)

    Google Scholar 

  28. Isidori, A.: Nonlinear Control System, 3rd edn. Springer, London (1995)

    Google Scholar 

  29. Wang, H.P., Vasseur, C., Koncar, V., Christov, N.: Recursive model free controller used in MIMO nonlinear system’s trajectory tracking. In: Proc. 18th Mediterranean Conf. on Control and Automation, Marrakech, pp. 436–441 (2010)

    Google Scholar 

  30. Yordanova, S., Noikova, N., Petrova, R., Tzvetkov, P.: Neuro-Fuzzy Modelling on Experimental Data in Anaerobic Digestion of Organic Waste in Waters. In: Proc. IEEE Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Sofia, pp. 84–88 (2005)

    Google Scholar 

  31. Ahring, B.K. (ed.): Biomethanation. Springer, Heidelberg (2003)

    Google Scholar 

  32. Angelidaki, L., Ellegaard, L.E., Ahring, B.K.: Biotech. Bioeng 42, 159–166 (1993)

    Article  Google Scholar 

  33. Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T., Siegrist, M.H., Vavilin, V.A.: Anaerobic digestion model no. 1 (ADM1). IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes. IWA, London (2002)

    Google Scholar 

  34. Lyberatos, G., Skiadas, I.V.: Global Nest. Int. J. 1, 63–76 (1999)

    Google Scholar 

  35. Simeonov, I., Momchev, V., Grancharov, D.: Water Research 30, 1087–1094 (1996)

    Article  Google Scholar 

  36. Simeonov, I., Karakashev, D.: Mathematical modelling of the anaerobic digestion including the syntrophic acetate oxidation. In: Preprints 7th Vienna Internat. Conf. on Math. Modelling (MATHMOD), on CD (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoping Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, H., Kalchev, B., Tian, Y., Simeonov, I., Christov, N. (2013). Modelling and Composed Recursive Model Free Control for the Anaerobic Digestion Process. In: Dumitrache, L. (eds) Advances in Intelligent Control Systems and Computer Science. Advances in Intelligent Systems and Computing, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32548-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32548-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32547-2

  • Online ISBN: 978-3-642-32548-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics