Skip to main content

Thermodynamics of Shock Waves

  • Chapter
  • First Online:
Shock Wave Compression of Condensed Matter

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Abstract

The use of continuum thermodynamic parameters (i.e. quantity per gram) doesn’t change thermodynamic equations. Therefore, the continuum thermodynamic state parameters will be used. Following Callen [1], the first law of thermodynamics using continuum variables for E, v, Q is:

$$ \mathrm{ dE} = \mathrm{ d}{{\mathrm{ W}}_1} + \mathrm{ dQ} = - \mathrm{ P} \ \mathrm{ dv} + \mathrm{ dQ} $$

which states that the change in internal energy is equal to work done plus heat flow. In general the first law can include dissipative forces, which allows for irreversible as well as reversible processes. Thermodynamics used in this class is the description of equilibrium final states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.B. Callen, Thermodynamics (Wiley, New York, 1960)

    MATH  Google Scholar 

  2. J.M. Walsh, R.H. Christian, Equation of state of metals from shock wave measurements. Phys. Rev. 97(6), 1544 (1955)

    Article  Google Scholar 

  3. W. Kaplan, Advanced Calculus (Addison-Wesley, Reading, 5th printing, 1959), p. 446

    Google Scholar 

  4. B. Hartmann, Determination of the bulk modulus and compressive properties of solids, in Methods of Chemistry: Determination of Elastic and Mechanical Properties, ed. by B.W. Rossiter, R.C. Baetzold (Wiley, New York, 1991), pp. 267–300

    Google Scholar 

  5. R.W. Warfield, Static high-pressure measurements on polymers, in Methods of Experimental Physics, ed. by R.A. Fava, vol. 16C (Academic, New York, 1980), pp. 91–116

    Google Scholar 

  6. R.E. Barker Jr., Gruneisen numbers for polymeric solids. J. Appl. Phys. 38(11), 4234–4242 (1967)

    Article  Google Scholar 

  7. S. Neel, Shock Compression of a Heterogeneous, Porous Polymer Composite. Ph.D. thesis (Georgia Tech, 2010)

    Google Scholar 

  8. G.E. Duvall, G.R. Fowles, in High Pressure Physics and Chemistry, ed. by R.S. Bradley, vol. 2 (Academic, New York, 1963)

    Google Scholar 

  9. S.A. Sheffield, Shock Induced Reaction in Carbon Disulfide. Ph.D. thesis, Washington State University, WSU SDL 78–03, Jun 1978

    Google Scholar 

  10. A. Dewaele, P. Loubeyre, M. Mezouar, Equations of state of six metals above 94 GPa. Phys. Rev. B 70, 094112 (2004)

    Article  Google Scholar 

  11. D.J. Andrews, Equation of state of the alpha and epsilon phases of iron. J. Phys. Chem. Solids 34, 825–840 (1973)

    Article  Google Scholar 

  12. J.M. Winey, G.E. Duvall, M.D. Knudson, Y.M. Gupta, Equation of state and temperature measurements for shocked nitromethane. J. Chem. Phys. 113(17), 7492 (2000)

    Article  Google Scholar 

  13. G.I. Pangilinan, Y.M. Gupta, Temperature determination in shocked condensed materials using Raman scattering. Appl. Phys. Lett. 70(8), 967–969 (1997)

    Article  Google Scholar 

  14. D.J. Pastine, J.W. Forbes, Accurate relations determining the volume dependence of the Quasiharmonic Gruneisen parameter. Phys. Rev. Letters 21, 1582 (1968)

    Article  Google Scholar 

  15. M. Cowperthwaite, Significance of some equations of state obtained from shock wave data. Am. J. Phys. 34, 1025 (1966)

    Article  Google Scholar 

  16. J.N. Johnson, D.B. Hayes, J.R. Asay, Equations of state and shock induced transformations in solid I-solid II liquid bismuth. J. Phys. Chem. Solids 35, 501 (1974)

    Article  Google Scholar 

  17. J.R. Asay, D.B. Hayes, Shock-compression and release behavior near melt states in aluminum. J. Appl. Phys. 46(11), 4789–4799 (1975)

    Article  Google Scholar 

  18. J.H. Rose, J.R. Smith, F. Guinea, J. Ferrante, Universal features of the equation of state of metals. Phys. Rev. B 29, 2963–2969 (1984)

    Article  Google Scholar 

  19. P. Vinet, J. Ferrante, J.H. Rose, J.R. Smith, Compressibility of solids. J. Geophys. Res. 92, 9319–9325 (1987)

    Article  Google Scholar 

  20. R.E. Cohen, O. Guseren, R.J. Hemley, Accuracy of equation-of-state formulations. Am. Mineral. 85, 338–344 (2000)

    Google Scholar 

  21. R. Jeanloz, Universal equation of state. Phys. Rev. B 38, 805–807 (1988)

    Article  Google Scholar 

  22. W.B. Holzapfel, Physics of solids under strong compression. Reports on Progress in Physics, 59, 29–90 (1996)

    Google Scholar 

  23. D.E. Grady, Equation of State for Solids, Shock Compression of Condensed Matter – 2011, AIP Conference Proceedings, vol. 1426, eds. by M.L. Elert, W.T. Buttler, J.P. Borg, J.L. Jordan, T.J. Vogler (Meleville, New York, 2012)

    Google Scholar 

  24. P.M. Morse, Diatomic molecules according to the wave mechanics. II vibrational levels. Phys. Rev. 34, 57–64 (1929)

    Article  MATH  Google Scholar 

  25. A.D. Chijioke, W.W. Nellis, I.F. Silvera, High-pressure equations of state of Al, Cu, Ta, and W. J. Appl. Phys. 98, 073526 (2005)

    Article  Google Scholar 

  26. DR. Lide (ed.), Handbook of Chemistry and Physics, 85th edn. (CRC press, 2004–2005)

    Google Scholar 

  27. S.P. Marsh, LASL Shock Hugoniot Data (U. CA Press, Berkeley/Los Angeles, 1980)

    Google Scholar 

  28. S. Meenakshi, B.S. Sharma, Analysis of universal equations of state for solids. Indian J. Phys. 73(5), 663–668 (1999)

    Google Scholar 

  29. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1968)

    Google Scholar 

  30. S.B. Segletes, Thermodynamic stability of the Mie-Gruneisen equation of state and its relevance to hydrocode computations. J. Appl. Phys. 70(5), 2489–2499 (1991)

    Article  Google Scholar 

  31. R. Menikoff, B.J. Plohr, The Riemann problem for fluid flow of real materials. Rev. Mod. Phys. 61(1), 75–130 (1999)

    Article  MathSciNet  Google Scholar 

  32. J.M. Winey, Y.A. Gruzdkov, Z.A. Dreger, B.J. Jensen, Y.M. Gupta, Thermomechanical model and temperature measurements for shocked ammonium perchlorate single crystals. J. Appl. Phys. 91(9), 5650 (2002)

    Article  Google Scholar 

  33. S.A. Sheffield, Response of liquid carbon disulfide to shock compression. II. Experimental design and measured Hugoniot information. J. Chem. Phys. 81(7), 3048–3063 (1984)

    Article  Google Scholar 

  34. D.H. Dolan, J.N. Johnson, Y.M. Gupta, Nanosecond freezing of water under multiple shock wave compression: Continuum modeling and wave profile measurements. J. Chem. Phys. 123, 064702 (2005)

    Article  Google Scholar 

  35. D.H. Dolan, Time dependent freezing of water under multiple shock wave compression, Ph.D. thesis, Washington State University, May 2003

    Google Scholar 

  36. J.W. Walsh, M.H. Rice, Dynamic compression of liquids from measurements on strong shock waves. J. Chem. Phys. 26(4), 815–823 (1957)

    Article  Google Scholar 

  37. M.H. Rice, J.W. Walsh, Equation of state of water to 250 kilobar. J. Chem. Phys. 26(4), 824–830 (1957)

    Article  Google Scholar 

  38. G.A. Gurtman, J.W. Kirsch, C.R. Hastings, Analytical equation of state for water compressed to 300 kbar. J. Appl. Phys. 42, 851 (1971)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry W. Forbes .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Forbes, J.W. (2012). Thermodynamics of Shock Waves. In: Shock Wave Compression of Condensed Matter. Shock Wave and High Pressure Phenomena. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32535-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32535-9_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32534-2

  • Online ISBN: 978-3-642-32535-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics