Skip to main content

Steady Detonation Waves in Right Circular Cylinders of Non-ideal Explosives

  • Chapter
  • First Online:
Shock Wave Compression of Condensed Matter

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 3842 Accesses

Abstract

This chapter overviews the detonation properties in right circular cylinders of non-ideal HE’s. This requires some understanding of 2-D hydrodynamic flow and modified ZND theory for non-ideal HE’s. This chapter will first cover the modified ZND detonation theory for non-ideal HE’s. Then a review of experimental techniques using right circular cylindrical samples will be presented since detonation science’s understanding is primarily based on the large experimental data base from cylindrical samples. This will be followed by curved detonation front theory for right circular cylindrical samples and a brief overview of select 2-D flow conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Cowperthwaite, A model solution for nonideal one-dimensional detonation waves. in Proceedings of the Eighth Symposium (International) on Detonation, NSWC MP 86–194, Albuquerque, 1985, pp. 1025–1031

    Google Scholar 

  2. M. Cowperthwaite, An exact solution for axial flow in cylindrically symmetric, steady-state detonation in polytropic explosive with arbitrary rate of decomposition. Phys. Fluid. 6(3), 1357–1378 (1994)

    Article  MATH  Google Scholar 

  3. B. Hayes, R.R. McQuire, in Proceedings of Symposium on High Dynamic Pressures,, Commissart a l’Engergie Atomique, Paris, 1978, p. 245

    Google Scholar 

  4. W.W. Wood, J.G. Kirkwood, Diameter effect in condensed explosives. The relation between velocity and radius of curvature of the detonation wave. J. Chem. Phys. 22(11), 1920 (1954)

    Article  Google Scholar 

  5. W.C. Davis, B.G. Craig, J.B. Ramsey, Failure of the Chapman-Jouguet theory for liquid and solid explosives. Phys. Fluid. 8, 2169 (1965)

    Article  Google Scholar 

  6. J.B. Bdzil, W.C. Davis, Time dependent detonations (Mathematical model for). Los Alamos Scientific Laboratory Report LA −5926-MS, 1975

    Google Scholar 

  7. H.M. Sternberg, L. Hudson, Equations of states for underwater explosives. The 1987 International Symposium Pyrotechnics and Explosives. (China Academic Press, Beijing, 1987)

    Google Scholar 

  8. R.H. Guirguis, P.J. Miller, Time-dependent equation of state for aluminized underwater explosives. in Proceedings of the Tenth Symposium (International) on Detonation, ONR OCNR 33395–12, Boston, 1993, p. 675

    Google Scholar 

  9. P.J. Miller, A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives. Mat. Res. Soc. Symp. Proc. 418, 413–420 (1996)

    Article  Google Scholar 

  10. A.W. Cambell, R. Engelke, The diameter effect in high-density heterogeneous explosives. in Proceedings of the, Sixth Detonation (International) Symposium on Detonation, Coronado, 1976, p. 642

    Google Scholar 

  11. M. Cowperthwaite, W.H. Zwisler, The JCZ equations of state for detonation products and the incorporation into the TIGER code. in Proceedings of the 6th Symposium (International) on Detonation, Coronado, 24–27 Aug 1976, pp. 162

    Google Scholar 

  12. W.M. Howard, L.E. Fried, P.C. Souers, Kinetic modeling of non-ideal explosives with CHEETAH. in Proceedings of the Eleventh International Detonation Symposium, Snowmass, 31 Aug–4 Sept 1998

    Google Scholar 

  13. J.W. Forbes, E.R. Lemar, Detonation wave velocity and curvature of a plastic-bonded, nonideal explosive PBXN-111 as a function of diameter and confinement. J. Appl. Phys. 84(12), 6600 (1998)

    Article  Google Scholar 

  14. J.W. Forbes, E.R. Lemar, G.T. Sutherland, R.N. Baker, Detonation wave curvature, corner turning, and unreached Hugoniot of PBXN-111, NSWCDD/TR-92/164, 19 Mar 1992 (online DTIC AD-A263-898)

    Google Scholar 

  15. B.M. Dobatz, P.C. Crawford, LLNL Explosives Handbook: Properties of Chemical Explosives and Explosive Stimulants. UCRL-52997 Change 2 (Lawrence Livermore National Laboratory, Livermore, 1985). 31 Jan 1985

    Google Scholar 

  16. T.R. Gibbs, A. Popolato, LASL Explosive Property Data (University of California Press, Berkeley, 1980)

    Google Scholar 

  17. A. Dremin, Towards Detonation (Springer, New York, 1999)

    Book  Google Scholar 

  18. C.M. Tarver, E.M. McGuire, Reactive flow modeling of the interactions of TATB detonation Waves with inert materials. in Proceedings of the Twelfth International Detonation Symposium, ONR 333-05-2, San Diego, 2002, pp. 641–649

    Google Scholar 

  19. D.L. Kennedy, Multi-valued normal shock velocity versus curvature relationships for highly non-ideal explosives. in Proceedings of the Eleventh International Detonation Symposium, ONR 33300–5, Snowmass, 1998, pp. 181–192

    Google Scholar 

  20. E.R. Lemar, J.W. Forbes, M. Cowperthwaite, Oblique shock wave calculations for detonation waves in brass confined and bare PBXN-111 cylindrical charges. in Shock Compression of Condensed Matter-1997, ed. by S.C. Schmidt, D.P. Dandekar, J.W. Forbes, AIP Conference Proceedings, Amherst 1998

    Google Scholar 

  21. R. Duff, E. Houston, J. Chem. Phys. 23, 1268 (1955)

    Article  Google Scholar 

  22. J. Deal, Chem. Phys. 27, 796 (1957)

    Google Scholar 

  23. V.A. Veretennikov, A.N. Dremin, O.K. Rozanov, K.K. Shevedov, Combust. Explos. Shock Waves (USSR) 3 pp. 1–8 (1967)

    Google Scholar 

  24. S.A. Sheffield, D.D. Bloomquist, C.M. Tarver, Subnanosecond measurements of detonation fronts in solid high explosives. J. Chem. Phys. 80(8), 3831 (1984)

    Article  Google Scholar 

  25. N.C. Coleburn, Chapman-Jouguet Pressures of Several Pure and Mixed Explosives. NOLTR 64–58, 25 June 1964 (online DTIC AD0603540)

    Google Scholar 

  26. M.H. Rice, J.M. Walsh, J. Chem. Phys. 26, 824–830 (1957)

    Article  Google Scholar 

  27. M. Finger, E. Lee, F.H. Helm, B. Hayes, H. Hornig, R. McGuire, M. Kahara, The effect of elemental compositions on the detonation behavior of explosives. in Proceedings of the Sixth Symposium (International) on Detonation, Naval Surface Weapons Center, White Oak, 24–27 Aug 1976, pp. 710–722

    Google Scholar 

  28. B. Hayes, C.M. Tarver, Interpolation of detonation parameters from experimental particle velocity records. in Proceedings of the Seventh Symposium (International) on Detonation, Naval Academy, Annapolis, 24–27 Aug 1976, p. 1029

    Google Scholar 

  29. B. Hayes, J.N. Fritz, Measurement of mass motion in detonation by an axially-symmetric electromagnetic technique. in Proceedings of the Fifth Symposium (International) on Detonation, ACR-184, Pasadena, 1970, pp. 447–454

    Google Scholar 

  30. N.L. Coleburn, T.P. Liddiard Jr., Hugoniot equations of state of several unreacted explosives. J. Chem. Phys. 44, 1929–1936 (1966)

    Article  Google Scholar 

  31. P.A. Urtiew, B. Hayes, Parametric study of the dynamic JWL-EOS for detonation products. Combust. Explo. Shock Waves 27, 505–514 (1991)

    Article  Google Scholar 

  32. S.A. Sheffield, D.D. Bloomquist, Subnanosecond velocity interferometer measurements of detontating PBX-9502, in discussions. in Proceedings of the Seventh Symposium (International) on Detonation, Annapolis, 16–19 June 1981, pp. 1084–1085

    Google Scholar 

  33. D.E. Hooks, D.B. Hayes, D.E. Hare, D. Reisman, K.S. Vandersall, J.W. Forbes, C. Hall, Isentropic compression of cyclotetramethylenetetanitramine (HMX) single crystals to 50 GPa. J. Appl. Phys. 99, 124901 (2006)

    Article  Google Scholar 

  34. M. Cowperthwaite, J.T. Rosenberg, Lagrange gage studies of detonation in some intermolecular EA based explosives. in Proceedings of the Eighth Symposium (International) on Detonation, Albuerquerque, 15–19 July 1985, p. 111

    Google Scholar 

  35. E.L. Lee, C.M. Tarver, Phenomenological model of shock initiation in heterogeneous explosives. Phys. Fluid. 23(12), 2362 (1980)

    Article  Google Scholar 

  36. P.A. Urtiew, A.S. Kusubov, R.E. Duff, Cellular structure of detonation in nitromethane. Combust. Flame 14, 117–122 (1970)

    Article  Google Scholar 

  37. P.A. Urtiew, From cellular structure for failure waves in liquid detonations. Combust. Flame 25, 241–245 (1975)

    Article  Google Scholar 

  38. P.A. Urtiew, C.M. Tarver, Effects of cellular structure on the behavior of gaseous detonation waves under transient conditions. in Gas Dynamics of Detonations and Explosions, ed by J.R. Bowen, N. Manson A.K. Oppenheim, R.I. Soloukhin, Vol. 75 of Progress in Astronautics and Aeronautics, 1981

    Google Scholar 

  39. F. Pintgen, C.A. Ecket, J.M. Austin, J.E. Shepherd, Direct observations of reaction zone structure in propagating detonations. Combust. Flame 133, 211–219 (2003)

    Google Scholar 

  40. J.G. Kirkwood, W.W. Wood, Structure of a steady-state plane detonation wave with finite rate. J. Chem. Phys. 22(11), 1915 (1954)

    Article  Google Scholar 

  41. J.B. Bdzil, W. Ficket, D.S. Stewart, Detonation shock dynamics: A new approach to modeling multi-dimensional detonation waves. in Proceedings of the Ninth Symposium (International) on Detonation, Portland, 28 Aug–1 Sep 1989

    Google Scholar 

  42. T.D. Aslam, J.B. Bdzil, L.G. Hill, Extensions to DSD theory: Analysis of PBX 9502 rate stick data. in Proceedings of the Eleventh International Detonation Symposium, ONR 33300–5, Snowmass, 1998, pp. 21–29

    Google Scholar 

  43. J.D. Yao, S. Stewart, On the dynamics of multi-dimensional detonation. J. Fluid Mech. 309, 225–275 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  44. G.T. Sutherland, E.R. Lemar, J.W. Forbes, E. Anderson, P. Miller, K.D. Ashwell, R.N. Baker, T.P. Liddard, Shock wave and detonation wave response of selected HMX based research explosives with HTPB binder systems, in High-Pressure Science and Technology-1993, ed. by S.C. Schmidt, J.W. Shaner, G.A. Samara, M. Ross. AIP Conference Proceedings, vol. 309 (AIP, New York, 1993), pp. 1413–1416

    Google Scholar 

  45. G.T. Sutherland, E.R. Lemar, M.H. Marcus, Analysis of wave curvature experiments for monomodal explosives with different crystal quality and particle size characteristics. AIP Conf. Proc. 955, 873–876 (2007)

    Google Scholar 

  46. D.L. Kennedy, D.A. Jones, Modelling shock initiation and detonation in the non-ideal explosive PBXW-115. in Proceedings of the Tenth International Detonation Symposium, ONR 33395–12, Boston, 1993, pp. 665–674

    Google Scholar 

  47. R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves (Springer Verlag, New York 1948), reprinted 1976, pp. 297–302

    Google Scholar 

  48. D.S. Stewart, J.B. Bdzil, Examples of detonation shock dynamics for detonation wave spreading. in Proceedings of the Ninth Symposium (International) on Detonation, OCNR 113291–7, Portland, 1989, pp. 773–783

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry W. Forbes .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Forbes, J.W. (2012). Steady Detonation Waves in Right Circular Cylinders of Non-ideal Explosives. In: Shock Wave Compression of Condensed Matter. Shock Wave and High Pressure Phenomena. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32535-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32535-9_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32534-2

  • Online ISBN: 978-3-642-32535-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics