Skip to main content

Motion Planning of Self-reconfigurable Modular Robots Using Rapidly Exploring Random Trees

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7429))

Abstract

Motion planning of self-reconfigurable robots in an environment is a challenging task. In this paper, we propose a sampling-based motion planning approach to plan locomotion of an organism with many degrees of freedom. The proposed approach is based on the Rapidly Exploring Random tree algorithm, which uses physical simulation to explore the configuration space of the highly articulated robots. Due to large number of actuators in such organisms, a novel randomized strategy for generating input signals is proposed. We demonstrate the performance of the proposed planner on a set of complex robots moving on a plane as well as on a rough surface.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ODE — Open Dynamics Engine, http://www.ode.org/

  2. Butler, Z., Fitch, R., Rus, D.: Experiments in distributed locomotion with a unit-compressible modular robot. In: Intelligent Robots and Systems, vol. 3 (2002)

    Google Scholar 

  3. Erkmen, I., Erkmen, A.M., Matsuno, F., Chatterjee, R., Kamegawa, T.: Snake robots to the rescue? IEEE Robotics Automation Magazine 9(3), 17–25 (2002)

    Article  Google Scholar 

  4. Gayle, R., Redon, S., Sud, A., Lin, M.C., Manocha, D.: Efficient motion planning of highly articulated chains using physics-based sampling. In: ICRA 2007 (2007)

    Google Scholar 

  5. Guibas, L.J., Holleman, C., Kavraki, L.E.: A probabilistic roadmap planner for flexible objects with a workspace medial-axis-based sampling approach. In: IROS 1999 (1999)

    Google Scholar 

  6. Jan Ijspeert, A.: Central pattern generators for locomotion control in animals and robots: A review. Neural Networks 21(4), 642–653 (2008)

    Article  Google Scholar 

  7. Stoy, K., Shen, W.-M., Will, P.M.: A simple approach to the control of locomotion in self-reconfigurable robots. Robotics and Autonomous Systems 44(3) (2003)

    Google Scholar 

  8. Kalisiak, M., van de Panne, M.: RRT-blossom: RRT with a local flood-fill behavior. In: IEEE International Conference on Robotics and Automation (2006)

    Google Scholar 

  9. Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation 12(4), 566–580 (1996)

    Article  Google Scholar 

  10. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation 12, 566–580 (1996)

    Article  Google Scholar 

  11. Kotay, K.D., Rus, D.L.: Motion synthesis for the self-reconfiguring molecule. In: Proceedings, 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 843–851 (October 1998)

    Google Scholar 

  12. Kuffner, J.J., LaValle, S.M.: RRT-Connect: An efficient approach to single-query path planning. In: IEEE International Conference on Robotics and Automation, pp. 995–1001 (2000)

    Google Scholar 

  13. Lau, H.Y.K., Ko, A., Lau, T.L.: A decentralized control framework for modular robots. In: IROS (2004)

    Google Scholar 

  14. LaValle, S.M.: Rapidly-exploring random trees: A new tool for path planning. TR 98-11 (1998)

    Google Scholar 

  15. LaValle, S.M., Yakey, J.H., Kavraki, L.E.: A probabilistic roadmap approach for systems with closed kinematic chains. In: ICRA 1999 (1999)

    Google Scholar 

  16. Levi, P., Kernbach, S. (eds.): Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution. Springer (2010)

    Google Scholar 

  17. Lindemann, S.R., LaValle, S.M.: Incrementally reducing dispersion by increasing voronoi bias in RRTs. In: IEEE International Conference on Robotics and Automation, vol. 4, pp. 3251–3257 (April 2004)

    Google Scholar 

  18. Lindemann, S.R., LaValle, S.M.: Steps toward derandomizing RRTs. In: IEEE Fourth International Workshop on Robot Motion and Control (2004)

    Google Scholar 

  19. Salemi, B., Shen, W.-M., Will, P.: Hormone-controlled metamorphic robots, pp. 4194–4199 (2001)

    Google Scholar 

  20. Shen, W.-M., Lu, Y., Will, P.: Hormone-based control for self-reconfigurable robots. In: Proceedings of the Fourth International Conference on Autonomous Agents, AGENTS 2000, pp. 1–8. ACM, New York (2000)

    Chapter  Google Scholar 

  21. Strandberg, M.: Augmenting RRT-planners with local trees. In: IEEE International Conference on Robotics and Automation, vol. 4 (April 2004)

    Google Scholar 

  22. Yershova, A., Jaillet, L., Simeon, T., LaValle, S.M.: Dynamic-domain RRTs: Efficient exploration by controlling the sampling domain. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 3856–3861 (April 2005)

    Google Scholar 

  23. Yershova, A., LaValle, S.M.: Improving motion-planning algorithms by efficient nearest-neighbor searching. IEEE Transactions on Robotics 23(1), 151–157 (2007), http://msl.cs.uiuc.edu/~yershova/MPNN/MPNN.htm

    Article  Google Scholar 

  24. Yim, M., Duff, D.G., Roufas, K.D.: Polybot: a modular reconfigurable robot. In: Proceedings. IEEE International Conference on Robotics and Automation, ICRA 2000, vol. 1, pp. 514–520 (2000)

    Google Scholar 

  25. Yim, M.: Locomotion with a unit-modular reconfigurable robot. TR (1994)

    Google Scholar 

  26. Yoshida, E., Matura, S., Kamimura, A., Tomita, K., Kurokawa, H., Kokaji, S.: A self-reconfigurable modular robot: Reconfiguration planning and experiments. The International Journal of Robotics Research 21(10-11), 903–915 (2002)

    Article  Google Scholar 

  27. Zhang, L., Manocha, D.: An efficient retraction-based RRT planner. In: IEEE International Conference on Robotics and Automation, pp. 3743–3750, 19-23 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vonásek, V., Košnar, K., Přeučil, L. (2012). Motion Planning of Self-reconfigurable Modular Robots Using Rapidly Exploring Random Trees. In: Herrmann, G., et al. Advances in Autonomous Robotics. TAROS 2012. Lecture Notes in Computer Science(), vol 7429. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32527-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32527-4_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32526-7

  • Online ISBN: 978-3-642-32527-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics