Skip to main content

Nature-Inspired Coordination for Complex Distributed Systems

  • Conference paper
Intelligent Distributed Computing VI

Part of the book series: Studies in Computational Intelligence ((SCI,volume 446))

Abstract

Originating from closed parallel systems, coordination models and technologies gained in expressive power so to deal with complex distributed systems. In particular, nature-inspired models of coordination emerged in the last decade as the most effective approaches to tackle the complexity of pervasive, intelligent, and self-* systems. In this paper we survey the most relevant nature-inspired coordination models, discuss the main open issues, and explore the trends for their future development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banâtre, J.-P., Fradet, P., Le Métayer, D.: Gamma and the Chemical Reaction Model: Fifteen Years After. In: Calude, C.S., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 17–44. Springer, Heidelberg (2001), doi:10.1007/3-540-45523-X_2

    Chapter  Google Scholar 

  2. Berry, G.: The chemical abstract machine. Theoretical Computer Science 96(1), 217–248 (1992), doi:10.1016/0304-3975(92)90185-I

    Article  MathSciNet  MATH  Google Scholar 

  3. De Nicola, R., Ferrari, G., Pugliese, R.: KLAIM: A kernel language for agent interaction and mobility. IEEE Transaction on Software Engineering 24(5), 315–330 (1998), doi:10.1109/32.685256

    Article  Google Scholar 

  4. De Nicola, R., Latella, D., Katoen, J.P., Massink, M.: StoKlaim: A stochastic extension of Klaim. Tech. Rep. 2006-TR-01, Istituto di Scienza e Tecnologie dell’Informazione “Alessandro Faedo”, ISTI (2006)

    Google Scholar 

  5. Gardelli, L., Viroli, M., Casadei, M., Omicini, A.: Designing Self-organising MAS Environments: The Collective Sort Case. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 254–271. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Gelernter, D.: Generative communication in Linda. ACM Transactions on Programming Languages and Systems 7(1), 80–112 (1985), doi:10.1145/2363.2433

    Article  MATH  Google Scholar 

  7. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977), doi:10.1021/j100540a008

    Article  Google Scholar 

  8. Grassé, P.P.: La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux 6(1), 41–80 (1959), doi:10.1007/BF02223791

    Article  MathSciNet  Google Scholar 

  9. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applications with the TOTA middleware. In: Proceedings of 2nd IEEE Annual Conference (PerCom 2004), Pervasive Computing and Communications, Orlando, FL, USA, March 14-17, pp. 263–273 (2004), doi:10.1109/PERCOM.2004.1276864

    Google Scholar 

  10. Mamei, M., Zambonelli, F.: Field-Based Coordination for Pervasive Multiagent Systems. In: Models, Technologies, and Applications. Springer Series in Agent Technology. Springer (2006), doi:10.1007/3-540-27969-5

    Google Scholar 

  11. Mariani, S., Omicini, A.: Molecules of Knowledge: Self-organisation in Knowledge-Intensive Environments. In: Fortino, G., et al. (eds.) Intelligent Distributed Computing VI. SCI, vol. 446, pp. 17–22. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Nardini, E., Omicini, A., Viroli, M., Schumacher, M.I.: Coordinating e-health systems with TuCSoN semantic tuple centres. Applied Computing Review 11(2), 43–52 (2011), doi:10.1145/1964144.1964150

    Article  Google Scholar 

  13. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Science of Computer Programming 41(3), 277–294 (2001), doi:10.1016/S0167-6423(01)00011-9

    Article  MATH  Google Scholar 

  14. Omicini, A., Ricci, A., Viroli, M.: Time-Aware Coordination in ReSpecT. In: Jacquet, J.-M., Picco, G.P. (eds.) COORDINATION 2005. LNCS, vol. 3454, pp. 268–282. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Omicini, A., Ricci, A., Viroli, M.: Timed environment for Web agents. Web Intelligence and Agent Systems 5(2), 161–175 (2007), http://iospress.metapress.com/content/bv82m5w0056m3877/

    Google Scholar 

  16. Omicini, A., Viroli, M.: Coordination models and languages: From parallel computing to self-organisation. The Knowledge Engineering Review 26(1), 53–59 (2011), doi:10.1017/S026988891000041X

    Article  Google Scholar 

  17. Ossowski, S., Menezes, R.: On coordination and its significance to distributed and multi-agent systems. Concurrency and Computation: Practice and Experience 18(4), 359–370 (2006), doi:10.1002/cpe.943, Special Issue: Coordination Models and Systems

    Article  Google Scholar 

  18. Van Dyke Parunak, H.: A Survey of Environments and Mechanisms for Human-Human Stigmergy. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2005. LNCS (LNAI), vol. 3830, pp. 163–186. Springer, Heidelberg (2006), doi:10.1007/11678809_10

    Chapter  Google Scholar 

  19. Van Dyke Parunak, H., Brueckner, S., Sauter, J.: Digital pheromone mechanisms for coordination of unmanned vehicles. In: Castelfranchi, C., Johnson, W.L. (eds.) 1st International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 449–450. ACM, New York (2002), doi:10.1145/544741.544843

    Google Scholar 

  20. Ricci, A., Omicini, A., Viroli, M., Gardelli, L., Oliva, E.: Cognitive Stigmergy: Towards a Framework Based on Agents and Artifacts. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 124–140. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Rossi, D., Cabri, G., Denti, E.: Tuple-based technologies for coordination. In: Omicini, A., Zambonelli, F., Klusch, M., Tolksdorf, R. (eds.) Coordination of Internet Agents: Models, Technologies, and Applications, ch. 4, pp. 83–109. Springer (2001)

    Google Scholar 

  22. Tolksdorf, R., Menezes, R.: Using Swarm Intelligence in Linda Systems. In: Omicini, A., Petta, P., Pitt, J. (eds.) ESAW 2003. LNCS (LNAI), vol. 3071, pp. 49–65. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Viroli, M., Casadei, M., Nardini, E., Omicini, A.: Towards a Pervasive Infrastructure for Chemical-Inspired Self-organising Services. In: Weyns, D., Malek, S., de Lemos, R., Andersson, J. (eds.) SOAR 2009. LNCS, vol. 6090, pp. 152–176. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Viroli, M., Casadei, M., Omicini, A.: A framework for modelling and implementing self-organising coordination. In: Shin, S.Y., Ossowski, S., Menezes, R., Viroli, M. (eds.) 24th Annual ACM Symposium on Applied Computing (SAC 2009), vol. III, pp. 1353–1360. ACM, Honolulu (2009), doi:10.1145/1529282.1529585

    Chapter  Google Scholar 

  25. Viroli, M., Pianini, D., Montagna, S., Stevenson, G.: Pervasive ecosystems: a coordination model based on semantic chemistry. In: Ossowski, S., Lecca, P., Hung, C.C., Hong, J. (eds.) 27th Annual ACM Symposium on Applied Computing (SAC 2012). ACM, Riva del Garda (2012)

    Google Scholar 

  26. Wegner, P.: Why interaction is more powerful than algorithms. Communications of the ACM 40(5), 80–91 (1997), doi:10.1145/253769.253801

    Article  Google Scholar 

  27. Zambonelli, F., Castelli, G., Ferrari, L., Mamei, M., Rosi, A., Di Marzo, G., Risoldi, M., Tchao, A.E., Dobson, S., Stevenson, G., Ye, Y., Nardini, E., Omicini, A., Montagna, S., Viroli, M., Ferscha, A., Maschek, S., Wally, B.: Self-aware pervasive service ecosystems. Procedia Computer Science 7, 197–199 (2011), doi:10.1016/j.procs.2011.09.006, Proceedings of the 2nd European Future Technologies Conference and Exhibition 2011 (FET 2011)

    Article  Google Scholar 

  28. Zambonelli, F., Viroli, M.: A survey on nature-inspired metaphors for pervasive service ecosystems. International Journal of Pervasive Computing and Communications 7(3), 186–204 (2011), doi:10.1108/17427371111172997

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Omicini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Omicini, A. (2013). Nature-Inspired Coordination for Complex Distributed Systems. In: Fortino, G., Badica, C., Malgeri, M., Unland, R. (eds) Intelligent Distributed Computing VI. Studies in Computational Intelligence, vol 446. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32524-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32524-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32523-6

  • Online ISBN: 978-3-642-32524-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics