Skip to main content

CLARIFI—Aerosol Direct Radiative Effect in Cloudy Scenes Retrieved from Space–Borne Spectrometers

  • Chapter
  • First Online:
Remote Sensing Advances for Earth System Science

Part of the book series: SpringerBriefs in Earth System Sciences ((BRIEFSEARTHSYST))

  • 1327 Accesses

Abstract

The retrieval of the aerosol direct radiative effect of smoke aerosols in cloudy scenes using space–borne spectrometers is described. The retrieval of aerosol parameters and radiative effects from satellite is often hampered by residual clouds in a scene. However, aerosols that absorb solar radiation in the ultraviolet (UV) reduce the reflectance in the UV measured by space-borne spectrometers, and can be detected even in the presence of clouds. The absorption of radiation by small UV-absorbing aerosol disappears in the shortwave infrared (SWIR) and cloud properties can be retrieved here. This can be used to quantify the aerosol direct radiative effect (DRE) in the cloudy scene, by modelling the aerosol–unpolluted cloud reflectance spectrum and comparing it to the measured aerosol–polluted cloud reflectance spectrum. The algorithm to retrieve the aerosol DRE over clouds is applied here to SCIAMACHY shortwave reflectance measurements of marine cloud scenes. The maximum aerosol direct radiative effect found from these measurements is 124\pm 7 Wm-2, which means that about 14 % of the incoming solar irradiance was absorbed by the smoke aerosols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chand D, Anderson TL, Wood R, Charlson RJ, Hu Y, Liu Z, Vaughan M (2008) Quantifying above-cloud aerosol using spaceborne lidar for improved understanding of cloud-sky direct climate forcing. J Geophys Res 113:D13206. doi:10.1029/2007JD009433

  2. Eskes HJ, van der ARJ, Brinksma EJ, Veefkind JP, de Haan JF, Valks PJM (2005) Retrieval and validation of ozone columns derived from measurements of SCIAMACHY on Envisat. Atmos Chem Phys Disc 5:4429–4475. doi:10.5194/acpd-5-4429-2005

  3. De Graaf M, Stammes P, Aben EAA (2007) Analysis of reflectance spectra of UV-absorbing aerosol scenes measured by SCIAMACHY. J Geophys Res 112:D02206. doi:10.1029/2006JD007249

  4. De Graaf M, Tilstra LG, Stammes P (2011) Retrieval of the aerosol direct radiative effect over clouds from space-borne spectrometry. J Geophys Res

    Google Scholar 

  5. Haywood JM, Osborne SR, Francis PN, Neil A, Formenti P, Andreae MO, Kaye PH (2003) The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000. J Geophys Res 108:D13. doi:10.1029/2002JD002226

  6. Keil A, Haywood JM (2003) Solar radiative forcing by biomass burning aerosol particles during SAFARI 2000: a case study based on measured aerosol and cloud properties. J Geophys Res 108:D13. doi:10.1029/2002JD002315

  7. Liou KN (2002) An introduction to atmospheric radiation. Academic Press, Amsterdam

    Google Scholar 

  8. Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5 doi:1680-7324/acp/2005-5-715

  9. Nakajima T, King MD (1990) Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements: Part I Theor J Atmos Sci 47(15):1878–1893

    Google Scholar 

  10. Stammes P, Tilstra LG, Braak R, de Graaf M, Aben EAA (2008) Estimate of solar radiative forcing by polluted clouds using OMI and SCIAMACHY satellite data. In: Proceedings of the international radiation symposium (IRS2008), pp. 577–580. Foz do Iguaçu, Brazil

    Google Scholar 

  11. Swap RJ, Garstang M, Macko SA, Tyson PD, Maenhaut W, Artaxo P, Kållberg P, Talbot R (1996) The long-range transport of southern African aerosols to the tropical South Atlantic. J Geophys Res 101:D19. doi:10.1029/95JD01049

  12. Wang P, Stammes P, van der AR, Pinardi G, van Roozendael M (2008) FRESCO+: an improved O\(_{2}\) A-band cloud retrieval algorithm for tropospheric trace gas retrievals. Atmos Chem Phys 8(21):6565–6576. doi:10.5194/acp-8-6565-2008

  13. Waquet F, Riedi J, Labonnote L, Goloub P, Cairns B, Deuzé J-L, Tanré D (2009) Aerosol remote sensing over clouds using A-train observations. J Atmos Sci 66. doi:10.1175/2009JAS3026.1

    Google Scholar 

  14. Yu H, Kaufman YJ, Chin M, Feingold G, Remer LA, Anderson TL, Balkanski Y, Bellouin N, Boucher O, Christopher S, DeCola P, Kahn R, Koch D, Loeb N, Reddy MS, Schulz M, Takemura T, Zhou M (2006) A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos Chem Phys 6(3):613–666. doi:10.5194/acp-6-613-2006

    Google Scholar 

Download references

Acknowledgments

This work was financed by the European Space Agency (ESA) within the Support to Science Element, project number 22403.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin de Graaf .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

de Graaf, M. (2013). CLARIFI—Aerosol Direct Radiative Effect in Cloudy Scenes Retrieved from Space–Borne Spectrometers. In: Remote Sensing Advances for Earth System Science. SpringerBriefs in Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32521-2_3

Download citation

Publish with us

Policies and ethics