Skip to main content

Maximal Empty Boxes Amidst Random Points

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7408))

Abstract

We show that the expected number of maximal empty axis-parallel boxes amidst n random points in the unit hypercube [0,1]d in ℝd is \((1 \pm o(1))\allowbreak \frac{(2d-2)!}{(d-1)!} \, n \ln^{d-1} n\), if d is fixed. This estimate is relevant for analyzing the performance of any exact algorithm for computing the largest empty axis-parallel box amidst n points in a given axis-parallel box R, that proceeds by examining all maximal empty boxes. While the Θ(n logd − 1 n) bound has been claimed for d = 3 for more than ten years by now, and has been recently used for all d ≥ 3 in the analysis of algorithms for computing the largest empty box, it did not rely on a valid proof. Here we present the first valid proof for the Θ(n logd − 1 n) bound; only an O(n logd − 1 n) bound was previously proved.

Due to space constraints, we omit the proofs of some lemmas in this extended abstract.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, A., Suri, S.: Fast algorithms for computing the largest empty rectangle. In: Proceedings of the 3rd Annual Symposium on Computational Geometry, pp. 278–290 (1987)

    Google Scholar 

  2. Atallah, M., Frederickson, G.: A note on finding the maximum empty rectangle. Discrete Applied Mathematics 13, 87–91 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atallah, M., Kosaraju, S.R.: An efficient algorithm for maxdominance, with applications. Algorithmica 4, 221–236 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Backer, J., Keil, M.: The bichromatic rectangle problem in high dimensions. In: Proceedings of the 21st Canadian Conference on Computational Geometry, pp. 157–160 (2009)

    Google Scholar 

  5. Backer, J., Keil, J.M.: The Mono- and Bichromatic Empty Rectangle and Square Problems in All Dimensions. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 14–25. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Bentley, J.L., Kung, H.T., Schkolnick, M., Thompson, C.D.: On the average number of maxima in a set of vectors and applications. Journal of the ACM 25, 536–543 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chazelle, B., Drysdale, R., Lee, D.T.: Computing the largest empty rectangle. SIAM Journal on Computing 15, 300–315 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chuan-Chong, C., Khee-Meng, K.: Principles and Techniques in Combinatorics. World Scientific, Singapore (1996)

    Google Scholar 

  9. Datta, A.: Efficient algorithms for the largest empty rectangle problem. Information Sciences 64, 121–141 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Datta, A., Soundaralakshmi, S.: An efficient algorithm for computing the maximum empty rectangle in three dimensions. Information Sciences 128, 43–65 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dumitrescu, A., Jiang, M.: On the largest empty axis-parallel box amidst n points. Algorithmica (2012), doi:10.1007/s00453-012-9635-5

    Google Scholar 

  12. Edmonds, J., Gryz, J., Liang, D., Miller, R.: Mining for empty spaces in large data sets. Theoretical Computer Science 296, 435–452 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giannopoulos, P., Knauer, C., Wahlström, M., Werner, D.: Hardness of discrepancy computation and ε-net verification in high dimension. Journal of Complexity (2011), doi:10.1016/j.jco.2011.09.001

    Google Scholar 

  14. Kaplan, H., Rubin, N., Sharir, M., Verbin, E.: Efficient colored orthogonal range counting. SIAM Journal on Computing 38, 982–1011 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Klein, R.: Direct dominance of points. International Journal of Computer Mathematics 19, 225–244 (1986)

    Article  MATH  Google Scholar 

  16. Kudryavtsev, L.D.: The method of undetermined coefficients. In: Hazewinkel, M. (ed.) Encyclopaedia of Mathematics. Springer (2001)

    Google Scholar 

  17. Kurosh, A.: Higher Algebra. Mir Publishers, Moscow (1975)

    Google Scholar 

  18. Marx, D.: Parameterized complexity and approximation algorithms. Computer Journal 51, 60–78 (2008)

    Article  Google Scholar 

  19. McKenna, M., O’Rourke, J., Suri, S.: Finding the largest rectangle in an orthogonal polygon. In: Proceedings of the 23rd Annual Allerton Conference on Communication, Control and Computing, Urbana-Champaign, Illinois (October 1985)

    Google Scholar 

  20. Naamad, A., Lee, D.T., Hsu, W.-L.: On the maximum empty rectangle problem. Discrete Applied Mathematics 8, 267–277 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Orlowski, M.: A new algorithm for the largest empty rectangle problem. Algorithmica 5, 65–73 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dumitrescu, A., Jiang, M. (2012). Maximal Empty Boxes Amidst Random Points. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2012 2012. Lecture Notes in Computer Science, vol 7408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32512-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32512-0_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32511-3

  • Online ISBN: 978-3-642-32512-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics