Skip to main content

Almost K-Wise vs. K-Wise Independent Permutations, and Uniformity for General Group Actions

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7408))

Abstract

A family of permutations in S n is k-wise independent if a uniform permutation chosen from the family maps any distinct k elements to any distinct k elements equally likely. Efficient constructions of k-wise independent permutations are known for k = 2 and k = 3, but are unknown for k ≥ 4. In fact, it is known that there are no nontrivial subgroups of S n for n ≥ 25 which are 4-wise independent. Faced with this adversity, research has turned towards constructing almost k-wise independent families, where small errors are allowed. Optimal constructions of almost k-wise independent families of permutations were achieved by several authors.

Our first result is that any such family with small enough error is statistically close to a distribution which is perfectly k-wise independent. This allows for a simplified analysis of algorithms: an algorithm which uses randomized permutations can be analyzed assuming perfect k-wise independence, and then applied to an almost k-wise independent family. In particular, it allows for an oblivious derandomization of two-sided randomized algorithms which work correctly given any k-wise independent distribution of permutations.

Another model is that of weighted families of permutations, or equivalently distributions of small support. We establish two results in this model. First, we show that a small random set of n O(k) permutations w.h.p supports a k-wise independent distribution. We then derandomize this by showing that any almost 2k-wise independent family supports a k-wise independent distribution. This allows for oblivious derandomization of algorithms for search problems which work correctly given perfect k-wise independent distributions.

These results are all in fact special cases of a general framework where a group acts on a set. In the aforementioned case, the group of permutations acts on tuples of k elements. We prove all the above results in the general setting of the action of a finite group on a finite set.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ailon, N., Alon, N.: Hardness of fully dense problems. Inform. and Comput. 205(8), 1117–1129 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Andoni, A., Kaufman, T., Matulef, K., Rubinfeld, R., Xie, N.: Testing k-wise and almost k-wise independence. In: STOC 2007, pp. 496–505. ACM, New York (2007)

    Chapter  Google Scholar 

  3. Alon, N., Babai, L., Itai, A.: A fast and simple randomized algorithm for the maximal independent set problem. Journal of Algorithms 7, 567–583 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alon, N., Goldreich, O., Mansour, Y.: Almost k-wise independence versus k-wise independence. Inf. Process. Lett. 88, 107–110 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Austrin, P., Håstad, J.: Randomly supported independence and resistance. SIAM J. Comput. 40(1), 1–27 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alon, N., Lovett, S.: Almost k-wise vs. k-wise independent permutations, and uniformity for general group actions. Electronic Colloquium on Computational Complexity, ECCC (2011)

    Google Scholar 

  7. Alagic, G., Russell, A.: Spectral Concentration of Positive Functions on Compact Groups. Journal of Fourier Analysis and Applications, 1–19 (February 2011)

    Google Scholar 

  8. Cameron, P.J.: Permutation groups. In: Handbook of Combinatorics, vol. 1, 2, pp. 611–645. Elsevier, Amsterdam (1995)

    Google Scholar 

  9. Kassabov, M.: Symmetric groups and expanders. Inventiones Mathematicae 170(2), 327–354 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kuperberg, G., Lovett, S., Peled, R.: Probabilistic existence of rigid combinatorial structures. In: Proceedings of the 44th Symposium on Theory of Computing, STOC 2012, pp. 1091–1106. ACM, New York (2012)

    Chapter  Google Scholar 

  11. Koller, D., Megiddo, N.: Constructing small sample spaces satisfying given constraints. SIAM Journal on Discrete Mathematics 7, 260–274 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaplan, E., Naor, M., Reingold, O.: Derandomized Constructions of k-Wise (Almost) Independent Permutations. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX and RANDOM 2005. LNCS, vol. 3624, pp. 354–365. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Kueh, K., Olson, T., Rockmore, D., Tan, K.: Nonlinear approximation theory on compact groups. Journal of Fourier Analysis and Applications 7, 257–281 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karp, R.M., Papadimitriou, C.H.: On linear characterizations of combinatorial optimization problems. SIAM Journal on Computing 11(4), 620–632 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Maslen, D.: Efficient computation of fourier transforms on compact groups. Journal of Fourier Analysis and Applications 4, 19–52 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Roy, A., Scott, A.J.: Unitary designs and codes. Des. Codes Cryptography 53, 13–31 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Russell, A., Wang, H.: How to fool an unbounded adversary with a short key. IEEE Transactions on Information Theory 52(3), 1130–1140 (2006)

    Article  MathSciNet  Google Scholar 

  18. Rubinfeld, R., Xie, N.: Testing Non-uniform k-Wise Independent Distributions over Product Spaces. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS, vol. 6198, pp. 565–581. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Vaudenay, S.: Provable Security for Block Ciphers by Decorrelation. In: Morvan, M., Meinel, C., Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 249–275. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  20. Vaudenay, S.: Adaptive-Attack Norm for Decorrelation and Super-Pseudorandomness. In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 49–61. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  21. Vaudenay, S.: Decorrelation: a theory for block cipher security. Journal of Cryptology 16(4), 249–286 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alon, N., Lovett, S. (2012). Almost K-Wise vs. K-Wise Independent Permutations, and Uniformity for General Group Actions. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2012 2012. Lecture Notes in Computer Science, vol 7408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32512-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32512-0_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32511-3

  • Online ISBN: 978-3-642-32512-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics