Skip to main content

Abstract

We initiate studying the Remote Set Problem (RSP) on lattices, which given a lattice asks to find a set of points containing a point which is far from the lattice. We show a polynomial-time deterministic algorithm that on rank n lattice \({\mathcal L}\) outputs a set of points at least one of which is \(\sqrt{\log n / n} \cdot \rho({\mathcal L})\)-far from \({\mathcal L}\), where \(\rho({\mathcal L})\) stands for the covering radius of \({\mathcal L}\) (i.e., the maximum possible distance of a point in space from \({\mathcal L}\)). As an application, we show that the Covering Radius Problem with approximation factor \(\sqrt{n /\log n}\) lies in the complexity class NP, improving a result of Guruswami, Micciancio and Regev by a factor of \(\sqrt{\log n}\) (Computational Complexity, 2005).

Our results apply to any ℓ p norm for 2 ≤ p ≤ ∞ with the same approximation factors (except a loss of \(\sqrt{\log \log n}\) for p = ∞). In addition, we show that the output of our algorithm for RSP contains a point whose ℓ2 distance from \({\mathcal L}\) is at least \((\log n / n)^{1/p} \cdot \rho^{(p)}({\mathcal L})\), where \(\rho^{(p)}({\mathcal L})\) is the covering radius of \({\mathcal L}\) measured with respect to the ℓ p norm. The proof technique involves a theorem on balancing vectors due to Banaszczyk (Random Struct. Alg., 1998) and the ‘six standard deviations’ theorem of Spencer (Trans. AMS, 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharonov, D., Regev, O.: Lattice problems in NP intersect coNP. Journal of the ACM 52(5), 749–765 (2005); Preliminary version in FOCS 2004

    Article  MathSciNet  Google Scholar 

  2. Ajtai, M.: Generating hard instances of lattice problems. In: Complexity of Computations and Proofs. Quad. Mat., vol. 13, pp. 1–32. Dept. Math., Seconda Univ. Napoli, Caserta (2004)

    Google Scholar 

  3. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Proc. 33rd ACM Symp. on Theory of Computing (STOC), pp. 601–610 (2001)

    Google Scholar 

  4. Ajtai, M., Kumar, R., Sivakumar, D.: Sampling short lattice vectors and the closest lattice vector problem. In: Proc. of 17th IEEE Annual Conference on Computational Complexity (CCC), pp. 53–57 (2002)

    Google Scholar 

  5. Alon, N., Panigrahy, R., Yekhanin, S.: Deterministic Approximation Algorithms for the Nearest Codeword Problem. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009. LNCS, vol. 5687, pp. 339–351. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Babai, L.: On Lovász lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Banaszczyk, W.: Balancing vectors and convex bodies. Studia Math. 106(1), 93–100 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Banaszczyk, W.: Balancing vectors and gaussian measures of n-dimensional convex bodies. Random Struct. Algorithms 12(4), 351–360 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bansal, N.: Constructive algorithms for discrepancy minimization. In: FOCS, pp. 3–10 (2010)

    Google Scholar 

  10. Barthe, F., Guédon, O., Mendelson, S., Naor, A.: A probabilistic approach to the geometry of the \({\ell}_p^n\)-ball. The Annals of Probability 33(2), 480–513 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boppana, R., Håstad, J., Zachos, S.: Does co-NP have short interactive proofs? Information Processing Letters 25, 127–132 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dadush, D., Peikert, C., Vempala, S.: Enumerative lattice algorithms in any norm via M-ellipsoid coverings. In: FOCS, pp. 580–589 (2011)

    Google Scholar 

  13. Dinur, I.: Approximating SVP ∞  to within almost-polynomial factors is NP-hard. Theoretical Computer Science 285(1), 55–71 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dinur, I., Kindler, G., Raz, R., Safra, S.: Approximating CVP to within almost-polynomial factors is NP-hard. Combinatorica 23(2), 205–243 (2003); Preliminary version in FOCS 1998

    Article  MathSciNet  MATH  Google Scholar 

  15. Goldreich, O., Goldwasser, S.: On the limits of nonapproximability of lattice problems. J. Comput. System Sci. 60(3), 540–563 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guruswami, V., Micciancio, D., Regev, O.: The complexity of the covering radius problem on lattices and codes. Computational Complexity 14(2), 90–121 (2005); Preliminary version in CCC 2004

    Article  MathSciNet  MATH  Google Scholar 

  17. Haviv, I., Lyubashevsky, V., Regev, O.: A note on the distribution of the distance from a lattice. Discrete and Computational Geometry 41(1), 162–176 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Haviv, I., Regev, O.: Hardness of the covering radius problem on lattices. In: Proc. of 21st IEEE Annual Conference on Computational Complexity (CCC), pp. 145–158 (2006)

    Google Scholar 

  19. Haviv, I., Regev, O.: Tensor-based hardness of the shortest vector problem to within almost polynomial factors. In: Proc. 39th ACM Symp. on Theory of Computing (STOC), pp. 469–477 (2007)

    Google Scholar 

  20. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12, 415–440 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Khot, S.: Hardness of Approximating the Shortest Vector Problem in Lattices. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 126–135 (2004)

    Google Scholar 

  22. Lenstra, A., Lenstra, H., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Micciancio, D.: Almost perfect lattices, the covering radius problem, and applications to Ajtai’s connection factor. SIAM Journal on Computing 34(1), 118–169 (2004); Preliminary version in STOC 2002

    Article  MathSciNet  MATH  Google Scholar 

  24. Micciancio, D.: Efficient reductions among lattice problems. In: SODA, pp. 84–93 (2008)

    Google Scholar 

  25. Micciancio, D.: Inapproximability of the shortest vector problem: Toward a deterministic reduction. Electronic Colloquium on Computational Complexity (ECCC) 19 (2012)

    Google Scholar 

  26. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic Perspective. The Kluwer International Series in Engineering and Computer Science, vol. 671. Kluwer Academic Publishers, Boston (2002)

    Book  MATH  Google Scholar 

  27. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J. (eds.) Post-quantum Cryprography, pp. 147–191. Springer (2008)

    Google Scholar 

  28. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice problems based on voronoi cell computations. In: Proc. 42nd ACM Symposium on Theory of Computing (STOC), pp. 351–358 (2010)

    Google Scholar 

  29. Milman, V.D., Schechtman, G.: Asymptotic theory of finite dimensional normed spaces. Springer-Verlag New York, Inc., New York (1986)

    MATH  Google Scholar 

  30. Peikert, C.: Limits on the hardness of lattice problems in ℓ p norms. Computational Complexity 17(2), 300–351 (2008); Preliminary version in CCC 2007

    Article  MathSciNet  MATH  Google Scholar 

  31. Regev, O., Rosen, R.: Lattice problems and norm embeddings. In: Proc. 38th ACM Symp. on Theory of Computing (STOC), pp. 447–456 (2006)

    Google Scholar 

  32. Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical Computer Science 53(2-3), 201–224 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Spencer, J.: Six standard deviations suffice. Trans. Amer. Math. Soc. 289(2), 679–706 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haviv, I. (2012). The Remote Set Problem on Lattices. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2012 2012. Lecture Notes in Computer Science, vol 7408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32512-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32512-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32511-3

  • Online ISBN: 978-3-642-32512-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics