Skip to main content

iBGP and Constrained Connectivity

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7408))

Abstract

We initiate the theoretical study of the problem of minimizing the size of an iBGP (Interior Border Gateway Protocol) overlay in an Autonomous System (AS) in the Internet subject to a natural notion of correctness derived from the standard “hot-potato” routing rules. For both natural versions of the problem (where we measure the size of an overlay by either the number of edges or the maximum degree) we prove that it is NP-hard to approximate to a factor better than Ω(logn) and provide approximation algorithms with ratio \(\tilde{O}(\sqrt{n})\). This algorithm is based on a natural LP relaxation and randomized rounding technique inspired by recent progress on approximating directed spanners. The main technique we use is a reduction to a new connectivity-based network design problem that we call Constrained Connectivity, in which we are given a graph G = (V,E) and for every pair of vertices u,v ∈ V we are given a set S(u,v) ⊆ V called the safe set of the pair. The goal is to find the smallest subgraph H = (V,F) of G in which every pair of vertices u,v is connected by a path contained in S(u,v). We show that the iBGP problem can be reduced to the special case of Constrained Connectivity where G = K n . Furthermore, we believe that Constrained Connectivity is an interesting problem in its own right, so provide stronger hardness results and integrality gaps for the general case.

Full version can be found at http://arxiv.org/abs/1107.2299

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basu, A., Ong, C.-H.L., Rasala, A., Shepherd, F.B., Wilfong, G.: Route oscillations in I-BGP with route reflection. In: Proc. ACM SIGCOMM (2002)

    Google Scholar 

  2. Bates, T., Chandra, R., Chen, E.: BGP route reflection - an alternative to full mesh IBGP. RFC 2796 (2000)

    Google Scholar 

  3. Berman, P., Bhattacharyya, A., Makarychev, K., Raskhodnikova, S., Yaroslavtsev, G.: Improved Approximation for the Directed Spanner Problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 1–12. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.P.: Transitive-closure spanners. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 932–941 (2009)

    Google Scholar 

  5. Buob, M.-O., Uhlig, S., Meulle, M.: Designing Optimal iBGP Route-Reflection Topologies. In: Das, A., Pung, H.K., Lee, F.B.S., Wong, L.W.C. (eds.) NETWORKING 2008. LNCS, vol. 4982, pp. 542–553. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Charikar, M., Hajiaghayi, M.T., Karloff, H.: Improved Approximation Algorithms for Label Cover Problems. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 23–34. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Dinitz, M., Krauthgamer, R.: Directed spanners via flow-based linear programs. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC 2011, pp. 323–332. ACM, New York (2011)

    Google Scholar 

  8. Dinitz, M., Wilfong, G.T.: iBGP and Constrained Connectivity. CoRR, abs/1107.2299 (2011), http://arxiv.org/abs/1107.2299

  9. Fabrikant, A., Papadimitriou, C.: The complexity of game dynamics: BGP oscillations, sink equilibria, and beyond. In: SODA 2008: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 844–853 (2008)

    Google Scholar 

  10. Feldman, M., Kortsarz, G., Nutov, Z.: Improved approximation algorithms for directed steiner forest. Journal of Computer and System Sciences 78(1), 279–292 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Griffin, T.G., Shepherd, F.B., Wilfong, G.: The stable paths problem and interdomain routing. IEEE/ACM Trans. Netw. 10(2), 232–243 (2002)

    Article  Google Scholar 

  12. Griffin, T.G., Wilfong, G.: On the correctness of IBGP configuration. In: Proc. ACM SIGCOMM (September 2002)

    Google Scholar 

  13. Kortsarz, G.: On the hardness of approximating spanners. Algorithmica 30 (1999)

    Google Scholar 

  14. Levin, H., Schapira, M., Zohar, A.: Internet routing and games. In: STOC 2008: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 57–66. ACM, New York (2008)

    Chapter  Google Scholar 

  15. Stewart, J.W.: BGP4: Inter-Domain Routing in the Internet. Addison-Wesley (1999)

    Google Scholar 

  16. Traina, P., McPherson, D., Scudder, J.: Autonomous system confederations for BGP. RFC 3065 (2001)

    Google Scholar 

  17. Vutukuru, M., Valiant, P., Kopparty, S., Balakrishnan, H.: How to Construct a Correct and Scalable iBGP Configuration. In: IEEE INFOCOM, Barcelona, Spain (April 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dinitz, M., Wilfong, G. (2012). iBGP and Constrained Connectivity. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2012 2012. Lecture Notes in Computer Science, vol 7408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32512-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32512-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32511-3

  • Online ISBN: 978-3-642-32512-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics