Towards a Logical Framework for Reasoning about Risk

  • Matteo Cristani
  • Erisa Karafili
  • Luca Viganò
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7465)


Evaluating the effectiveness of the security measures undertaken to protect a distributed system (e.g., protecting privacy of data in a network or in an information system) is a difficult task that, among other things, requires a risk assessment. We introduce a logical framework that allows one to reason about risk by means of operators that formalize causes, effects, preconditions, prevention and mitigation of events that may occur in the system. This is work in progress and we describe a number of interesting variants that could be considered.


Security Measure Propositional Variable Logical Framework Closed World Assumption Closure Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    AVANTSSAR. Deliverable 5.1: Problem cases and their trust and security requirements (2008),
  2. 2.
    Bartsch, S.: A calculus for the qualitative risk assessment of policy override authorization. In: SIN, pp. 62–70 (2010)Google Scholar
  3. 3.
    Basin, D.A., Caleiro, C., Ramos, J., Viganò, L.: Labelled tableaux for distributed temporal logic. Journal of Logic and Computation 19(6), 1245–1279 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bell, J.: A Common Sense Theory of Causation. In: Blackburn, P., Ghidini, C., Turner, R.M., Giunchiglia, F. (eds.) CONTEXT 2003. LNCS, vol. 2680, pp. 40–53. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Chapin, P.C., Skalka, C., Wang, X.S.: Risk assessment in distributed authorization. In: FMSE, pp. 33–42 (2005)Google Scholar
  6. 6.
    D’Agostino, M., Gabbay, D.M., Hähnle, R., Posegga, J. (eds.): Handbook of Tableau Methods. Kluwer Academic Publishers (1999)Google Scholar
  7. 7.
    Dunn, J.M.: Positive modal logic. Studia Logica 55, 301–317 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Gabbay, D.M.: Labelled Deductive Systems. Clarendon Press (1996)Google Scholar
  9. 9.
    Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories. Artificial Intelligence 153(1-2), 49–104 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Lewis, D.: Causation. The Journal of Philosophy 70(17), 556–567 (1973)CrossRefGoogle Scholar
  11. 11.
    Lewis, D.: Causation as influence. The Journal of Philosophy 97(4), 182–197 (2000)CrossRefGoogle Scholar
  12. 12.
    Li, N., Mitchell, J.C.: A role-based trust-management framework. In: DISCEX-III, pp. 201–212. IEEE Computer Society (2003)Google Scholar
  13. 13.
    Masini, A., Viganò, L., Volpe, M.: A history of until. ENTCS 262, 189–204 (2010)Google Scholar
  14. 14.
    Shafer, G., Gillett, P.R., Scherl, R.B.: The logic of events. Annals of Mathematics and Artificial Intelligence 28(1-4), 315–389 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Singh, A., Lilja, D.J.: Improving risk assessment methodology: a statistical design of experiments approach. In: SIN, pp. 21–29 (2009)Google Scholar
  16. 16.
    Terenziani, P., Torasso, P.: Time, action-types, causation: An integrated analysis. Computational Intelligence 11, 529–552 (1995)CrossRefGoogle Scholar
  17. 17.
    Turner, H.: A logic of universal causation. AI 113(1-2), 87–123 (1999)zbMATHGoogle Scholar
  18. 18.
    Viganò, L.: Labelled Non-Classical Logics. Kluwer Academic Publishers (2000)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Matteo Cristani
    • 1
  • Erisa Karafili
    • 1
  • Luca Viganò
    • 1
  1. 1.Dipartimento di InformaticaUniversità degli Studi di VeronaItaly

Personalised recommendations