Skip to main content

Difference Methods for One-Dimensional PDE

  • Chapter
  • 4743 Accesses

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

Finite-difference methods for one-dimensional partial differential equations are introduced by first identifying the classes of equations upon which suitable discretizations are constructed. It is shown how parabolic equations and the corresponding boundary conditions are discretized such that a desired local order of error is achieved and that the discretization is consistent and yields a stable and convergent solution scheme. Convergence criteria are established for a variety of explicit and implicit difference schemes. Energy estimates and theorems on maxima are given as auxiliary tools that allow us to ascertain that the solutions are physically meaningful. Difference schemes for hyperbolic equations are introduced from the standpoint of the Courant–Friedrich–Lewy criterion, dispersion and dissipation. Various techniques for non-linear equations and equations of mixed type are given, including high-resolution schemes for equations that can be expressed in terms of conservation laws. The Problems include the (parabolic) diffusion and (hyperbolic) advection equation, Burgers equation, the shock-tube problem, Korteweg–de Vries equation, and the non-stationary linear and cubic Schrödinger equations.

This is a preview of subscription content, log in via an institution.

References

  1. J.W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods. Springer Texts in Applied Mathematics, vol. 22 (Springer, Berlin, 1998)

    Google Scholar 

  2. D. Knoll, J. Morel, L. Margolin, M. Shashkov, Physically motivated discretization methods. Los Alamos Sci. 29, 188 (2005)

    Google Scholar 

  3. A. Tveito, R. Winther, Introduction to Partial Differential Equations. Springer Texts in Applied Mathematics, vol. 29 (Springer, Berlin, 2005)

    MATH  Google Scholar 

  4. G.D. Smith, Numerical Solution of Partial Differential Equations (Oxford University Press, Oxford, 2003)

    Google Scholar 

  5. J.W. Thomas, Numerical Partial Differential Equations: Conservation Laws and Elliptic Equations. Springer Texts in Applied Mathematics, vol. 33 (Springer, Berlin, 1999)

    MATH  Google Scholar 

  6. E. Godlewski, P.-A. Raviart, Numerical Approximations of Hyperbolic Systems of Conservation Laws (Springer, Berlin, 1996)

    Google Scholar 

  7. R.J. LeVeque, Numerical Methods for Conservation Laws (Birkhäuser, Basel, 1990)

    Book  MATH  Google Scholar 

  8. P.K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. D. Eisen, On the numerical analysis of a fourth order wave equation. SIAM J. Numer. Anal. 4, 457 (1967)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. D.J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary wave. Philos. Mag. Ser. 5 39, 422 (1895)

    Article  MATH  Google Scholar 

  11. B. Fornberg, G.B. Whitham, A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. Lond. Ser. A 289, 373 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. X. Lai, Q. Cao, Some finite difference methods for a kind of GKdV equations. Commun. Numer. Methods Eng. 23, 179 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Q. Cao, K. Djidjeli, W.G. Price, E.H. Twizell, Computational methods for some non-linear wave equations. J. Eng. Math. 35, 323 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Kormann, S. Holmgren, O. Karlsson, Accurate time propagation for the Schrödinger equation with an explicitly time-dependent Hamiltonian. J. Chem. Phys. 128, 184101 (2008)

    Article  ADS  Google Scholar 

  15. C. Lubich, in Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, ed. by J. Grotendorst, D. Marx, A. Muramatsu. NIC Series, vol. 10 (John von Neumann Institute for Computing, Jülich, 2002), p. 459

    Google Scholar 

  16. W. van Dijk, F.M. Toyama, Accurate numerical solutions of the time-dependent Schrödinger equation. Phys. Rev. E 75, 036707 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  17. T.N. Truong et al., A comparative study of time dependent quantum mechanical wave packet evolution methods. J. Chem. Phys. 96, 2077 (1992)

    Article  ADS  Google Scholar 

  18. X. Liu, P. Ding, Dynamic properties of cubic nonlinear Schrödinger equation with varying nonlinear parameter. J. Phys. A, Math. Gen. 37, 1589 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Širca, S., Horvat, M. (2012). Difference Methods for One-Dimensional PDE. In: Computational Methods for Physicists. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32478-9_9

Download citation

Publish with us

Policies and ethics