Skip to main content

Part of the book series: Graduate Texts in Physics ((GTP))

  • 4783 Accesses

Abstract

Solving systems of linear equations, linear least-square problems and matrix eigenvalue problems is handled by a myriad of freely available and commercial tools. Yet even the most basic operations like the multiplication of two matrices or computing a determinant can be excessively time-consuming and inaccurate if performed recklessly. This chapter elucidates the crucial aspects of matrix manipulation and standard algorithms for the classes of matrices most frequently encountered by a physicist, with particular attention to the analysis of errors and condition estimates. Singular value decomposition is illustrated in the framework of image compression. A separate section is devoted to random matrices occurring in the study of quantum chaos, information theory and finance, with emphasis on Gaussian orthogonal and unitary ensembles and their cyclic counterparts. The Examples and Problems include the calculation of energy states of particles in one-dimensional and two-dimensional potentials, percolations in random lattices, electric circuits of linear elements, Anderson localization, and spectra of symmetric random matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. J.W. Demmel, Applied Numerical Linear Algebra (SIAM, Philadelphia, 1997)

    Book  MATH  Google Scholar 

  2. G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edn. (Johns Hopkins University Press, Baltimore, 1996)

    MATH  Google Scholar 

  3. LAPACK, The Linear Algebra PACKage. http://www.netlib.org/lapack (version for Fortran 77), ../lapack95 (version for Fortran 95), ../clapack (version for C), ../lapack++ (version for C++), ../java/f2j (version for Java)

  4. E. Anderson et al., LAPACK Users’ Guide, 3rd edn. (SIAM, Philadelphia, 1999)

    Book  Google Scholar 

  5. V. Strassen, Gaussian elimination is not optimal. Numer. Math. 13, 354 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Demmel, N.J. Higham, Stability of block algorithms with fast level 3 BLAS. ACM Trans. Math. Softw. 18, 274 (1992)

    Article  MATH  Google Scholar 

  7. N.J. Higham, Exploiting fast matrix multiplication within the level 3 BLAS. ACM Trans. Math. Softw. 16, 352 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Chatterjee, A.R. Lebeck, P.K. Patnala, M. Thottethodi, Recursive array layouts and fast matrix multiplication. IEEE Trans. Parallel Distrib. Syst. 13, 1105 (2002)

    Article  Google Scholar 

  9. K. Goto, R.A. van de Geijn, Anatomy of high-performance matrix multiplication. ACM Trans. Math. Softw. 34, art. 12 (2008)

    Article  Google Scholar 

  10. N.J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd edn. (SIAM, Philadelphia, 2002)

    Book  MATH  Google Scholar 

  11. D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9, 251 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. C.C. Douglas, M.A. Heroux, G. Slishman, R.M. Smith, GEMMW: a portable level-3 BLAS Winograd variant of Strassen’s matrix-matrix multiply algorithm. J. Comput. Phys. 110, 1 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. P. D’Alberto, A. Nicolau, Adaptive Winograd’s matrix multiplications. ACM Trans. Math. Softw. 36, art. 3 (2009)

    MathSciNet  Google Scholar 

  14. J. Demmel, I. Dumitriu, O. Holtz, R. Kleinberg, Fast matrix multiplication is stable. Numer. Math. 106, 199 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. J.W. Demmel, N.J. Higham, Stability of block algorithms with fast level-3 BLAS. ACM Trans. Math. Softw. 18, 274 (1992)

    Article  MATH  Google Scholar 

  16. D.H. Bailey, K. Lee, H.D. Simon, Using Strassen’s algorithm to accelerate the solution of linear systems. J. Supercomput. 4, 357 (1990)

    Article  Google Scholar 

  17. J. Demmel, The componentwise distance to the nearest singular matrix. SIAM J. Matrix Anal. Appl. 13, 10 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. J.W. Demmel, On condition numbers and the distance to the nearest ill-posed problem. Numer. Math. 51, 251 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. R.M. Gray, Toeplitz and circulant matrices: a review. Found. Trends Commun. Inf. Theory 2, 155 (2006)

    Article  Google Scholar 

  20. J.R. Bunch, Stability of methods for solving Toeplitz systems of equations. SIAM J. Sci. Stat. Comput. 6, 349 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Kailath, J. Chun, Generalized displacement structure for block-Toeplitz, Toeplitz-block, and Toeplitz-derived matrices. SIAM J. Matrix Anal. Appl. 15, 114 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Kailath, A.H. Sayed, Displacement structure: theory and applications. SIAM Rev. 37, 297 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. G.S. Anmar, W.B. Gragg, Superfast solution of real positive definite Toeplitz systems. SIAM J. Matrix Anal. Appl. 9, 61 (1988)

    Article  MathSciNet  Google Scholar 

  24. T.F. Chan, P.C. Hansen, A look-ahead Levinson algorithm for indefinite Toeplitz systems. SIAM J. Matrix Anal. Appl. 13, 490 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. M.K. Ng, Iterative Methods for Toeplitz Systems (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  26. W. Gautschi, G. Inglese, Lower bound for the conditional number of Vandermonde matrices. Numer. Math. 52, 241 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Å. Björck, V. Pereyra, Solution of Vandermonde systems of equations. Math. Comput. 24, 893 (1970)

    Google Scholar 

  28. Å. Björck, T. Elfving, Algorithms for confluent Vandermonde systems. Numer. Math. 21, 130 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  29. N.J. Higham, Fast solution of Vandermonde-like systems involving orthogonal polynomials. IMA J. Numer. Anal. 8, 473 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Calvetti, L. Reichel, Fast inversion of Vandermonde-like matrices involving orthogonal polynomials. BIT Numer. Math. 33, 473 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. H. Lu, Fast solution of confluent Vandermonde linear systems. SIAM J. Matrix Anal. Appl. 15, 1277 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. H. Lu, Solution of Vandermonde-like systems and confluent Vandermonde-like systems. SIAM J. Matrix Anal. Appl. 17, 127 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Bini, V.Y. Pan, Polynomial and Matrix Computations, Vol. 1: Fundamental Algorithms (Birkhäuser, Boston, 1994), Sect. 2.4

    Google Scholar 

  34. W.W. Hager, Condition estimates. SIAM J. Sci. Stat. Comput. 5, 311 (1984). See also [1], Algorithm 2.5

    Article  MathSciNet  MATH  Google Scholar 

  35. N.J. Higham, FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation. ACM Trans. Math. Softw. 14, 381 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. N.J. Higham, F. Tisseur, A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra. SIAM J. Matrix Anal. Appl. 21, 1185 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. N.J. Higham, Experience with a matrix norm estimator. SIAM J. Sci. Stat. Comput. 11, 804 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  38. N.J. Higham, A survey of condition number estimation for triangular matrices. SIAM Rev. 29, 575 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  39. D.S. Watkins, A case where balancing is harmful. Electron. Trans. Numer. Anal. 23, 1 (2006)

    MathSciNet  MATH  Google Scholar 

  40. E.E. Osborne, On pre-conditioning of matrices. J. Assoc. Comput. Mach. 7, 338 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  41. B.N. Parlett, C. Reinsch, Balancing a matrix for calculation of eigenvalues and eigenvectors. Numer. Math. 13, 293 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  42. T.-Y. Chen, J.W. Demmel, Balancing sparse matrices for computing eigenvalues. Linear Algebra Appl. 309, 261 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. J.J. Dongarra, I.S. Duff, D.C. Sorensen, H.A. van der Vorst, Numerical Linear Algebra for High-Performance Computers (SIAM, Philadelphia, 1998)

    Book  MATH  Google Scholar 

  44. X. Li, Direct solvers for sparse matrices. Sept. 2006 (accessible on the web)

    Google Scholar 

  45. M. Heath, E. Ng, B.W. Peyton, Parallel algorithms for sparse linear systems. SIAM Rev. 33, 420 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  46. N.I.M. Gould, J.A. Scott, Y. Hu, A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations. ACM Trans. Math. Softw. 33, 10 (2007)

    Article  MathSciNet  Google Scholar 

  47. J.A. Scott, Y. Hu, Experiences of sparse direct symmetric solvers. ACM Trans. Math. Softw. 33, 18 (2007)

    Article  MathSciNet  Google Scholar 

  48. E.J. Haunschmid, C.W. Ueberhuber, Direct solvers for sparse systems. TU Wien, SFB F011 “AURORA” Report, 1999

    Google Scholar 

  49. I.S. Duff, M.A. Heroux, R. Pozo, An overview of the sparse basic linear algebra subprograms: the new standard from the BLAS technical forum. ACM Trans. Math. Softw. 28, 239 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Demmel, Y. Hida, E.J. Riedy, X.S. Li, Extra-precise iterative refinement for overdetermined least squares problems. ACM Trans. Math. Softw. 35, 28 (2009). The routines xGELS offer only the basic solution without iterative improvement. This novelty is now offered by the xGELS_X and xGELS_RFSX routines

    Article  MathSciNet  Google Scholar 

  51. G. Golub, W. Kahan, Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Numer. Anal. B 2, 205 (1965)

    MathSciNet  ADS  Google Scholar 

  52. D. Kalman, A singularly valuable decomposition: the SVD of a matrix. Coll. Math. J. 27, 2 (1996)

    Article  MathSciNet  Google Scholar 

  53. M. Abate, When is a linear operator diagonalizable? Am. Math. Mon. 104, 824 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  54. D.S. Watkins, Understanding the QR algorithm. SIAM Rev. 24, 427 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  55. D.S. Watkins, The QR algorithm revisited. SIAM Rev. 50, 133 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. C. Van Loan, On estimating the condition of eigenvalues and eigenvectors. Linear Algebra Appl. 88/89, 715 (1987)

    Article  Google Scholar 

  57. J.H. Wilkinson, Sensitivity of eigenvalues. Util. Math. 25, 5 (1984)

    MathSciNet  MATH  Google Scholar 

  58. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007). See also the equivalent handbooks in Fortran, Pascal and C, as well as http://www.nr.com

    MATH  Google Scholar 

  59. J.J.M. Cuppen, A divide and conquer method for the symmetric tridiagonal eigenproblem. Numer. Math. 36, 177 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  60. I.S. Dhillon, B.N. Parlett, Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices. Linear Algebra Appl. 387, 1 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  61. I.S. Dhillon, B.N. Parlett, C. Vömel, The design and implementation of the MRRR algorithm. ACM Trans. Math. Softw. 32, 533 (2006)

    Article  MATH  Google Scholar 

  62. H.-J. Stöckmann, Quantum Chaos. An Introduction (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  63. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Harcourt College Publishers, Fort, Worth, 1976)

    Google Scholar 

  64. D.R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239 (1976)

    Article  ADS  Google Scholar 

  65. G.H. Golub, Some modified matrix eigenvalue problems. SIAM Rev. 15, 318 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  66. R.M.M. Mattheij, G. Söderlind, On inhomogeneous eigenvalue problems. Linear Algebra Appl. 88/89, 507 (1987)

    Article  Google Scholar 

  67. G.H. Golub, J.H. Wilkinson, Ill-conditioned eigensystems and the computation of the Jordan canonical form. SIAM Rev. 18, 578 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  68. A. Bujosa, R. Criado, C. Vega, Jordan normal form via elementary transformations. SIAM Rev. 40, 947 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. B. Kågström, A. Ruhe, An algorithm for numerical computation of the Jordan normal form of a complex matrix. ACM Trans. Math. Softw. 6, 398 (1980)

    Article  MATH  Google Scholar 

  70. C. Moler, C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45, 3 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. C. Moler, C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev. 20, 801 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  72. N.J. Higham, The scaling and squaring method for the matrix exponential revisited. SIAM Rev. 51, 747 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  73. N.J. Higham, Functions of Matrices. Theory and Computation (SIAM, Philadelphia, 2008)

    MATH  Google Scholar 

  74. W. Kerner, Large-scale complex eigenvalue problem. J. Comput. Phys. 85, 1 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  75. F. Haake, Quantum Signatures of Chaos, 3rd edn. (Springer, Berlin, 2006)

    Google Scholar 

  76. A.M. Tulino, S. Verdú, Random matrix theory and wireless communications. Found. Trends Commun. Inf. Theory 1, 1 (2004)

    Article  Google Scholar 

  77. V. Plerou et al., Random matrix approach to cross correlations in financial data. Phys. Rev. E 65, 066126 (2002)

    Article  ADS  Google Scholar 

  78. A. Edelman, N.R. Rao, Random matrix theory. Acta Numer. 14, 233 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  79. P. Bleher, A. Its, Random Matrix Models and Their Applications (Cambridge University Press, Cambridge, 2001)

    MATH  Google Scholar 

  80. M.L. Mehta, Random Matrices, 2nd edn. (Academic Press, San Diego, 1990)

    Google Scholar 

  81. T. Tao, V. Vu, From the Littlewood–Offord problem to the circular law: universality of the spectral distribution of random matrices. Bull. Am. Math. Soc. 46, 377 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  82. V.L. Girko, Circular law. Theory Probab. Appl. 29, 694 (1985)

    Article  Google Scholar 

  83. M. Horvat, The ensemble of random Markov matrices. J. Stat. Mech. 2009, P07005 (2009)

    Article  MathSciNet  Google Scholar 

  84. D.V. Widder, The Stieltjes transform. Trans. Am. Math. Soc. 43, 7 (1938)

    Article  MathSciNet  Google Scholar 

  85. R.M. Dudley, Real Analysis and Probability (Cambridge University Press, Cambridge, 2002)

    Book  MATH  Google Scholar 

  86. V.A. Marčenko, L.A. Pastur, Distribution of eigenvalues for some sets of random matrices. Math. USSR Sb. 1, 457 (1967)

    Article  Google Scholar 

  87. R.R. Nadakuditi, Applied stochastic eigen-analysis. Doctoral dissertation. Massachusetts Institute of Technology, Cambridge, 1999. Accessible at http://hdl.handle.net/1912/1647

  88. O. Bohigas, M.J. Giannoni, C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52, 1 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  89. E.P. Wigner, On the distribution of the roots of certain symmetric matrices. Ann. Math. 67, 325 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  90. G.W. Stewart, The efficient generation of random orthogonal matrices with an application to condition estimators. SIAM J. Numer. Anal. 17, 403 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  91. F. Mezzadri, How to generate random matrices from the classical compact groups. Not. Am. Math. Soc. 54, 592 (2007)

    MathSciNet  MATH  Google Scholar 

  92. S. Bunde, S. Havlin, Fractals and Disordered Systems (Springer, Berlin, 1991)

    Book  MATH  Google Scholar 

  93. R.J. Wilson, J.J. Watkins, Graphs: An Introductory Approach (Wiley, New York, 1990)

    Google Scholar 

  94. D. Stauffer, A. Aharony, Introduction to Percolation Theory, 2nd edn. (Taylor & Francis, London, 1992)

    Google Scholar 

  95. G. Chen, T. Ueta, Chaos in Circuits and Systems (World Scientific, Singapore, 2002)

    MATH  Google Scholar 

  96. W. Kinzel, G. Reents, Physics by Computer: Programming of Physical Problems Using Mathematica and C (Springer, Berlin, 1997)

    Google Scholar 

  97. P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  98. F.J. Dyson, The dynamics of a disordered linear chain. Phys. Rev. 92, 1331 (1953)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  99. M.V. Berry, Regular and irregular semiclassical wavefunctions. J. Phys. A 10, 2083 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Širca, S., Horvat, M. (2012). Matrix Methods. In: Computational Methods for Physicists. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32478-9_3

Download citation

Publish with us

Policies and ethics