Skip to main content

Basics of Numerical Analysis

  • Chapter
  • 4788 Accesses

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

After reviewing the basic properties of floating-point representation, examples of typical use of expressions in finite-precision arithmetic are given, along with illustrations of common programming pitfalls. Selected classes of function approximation are shown next: optimal (minimax) and rational (Padé) approximations, as well as approximations of evolution operators for Hamiltonian systems. Emphasis is given to the efficient calculation of the Padé approximants and preservation of unitarity. Fundamental techniques of power and asymptotic expansions and asymptotic analysis are discussed: Taylor and Laurent series, treatment of divergent asymptotic series, asymptotic analysis of integrals by the Laplace method and the stationary-phase approximation. The treatment of differential equations involving large parameters is elucidated on the example by the WKB method in quantum mechanics. Tests of convergence of series are listed, followed by a presentation of efficient acceleration techniques for their summation. Examples and Problems include the system of interacting electric dipoles, integral of the Gaussian function, computation of Airy and Bessel functions, and calculation of the Coulomb scattering amplitude.

This is a preview of subscription content, log in via an institution.

References

  1. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 2nd edn. (MIT Press/McGraw-Hill, Cambridge/New York, 2001)

    MATH  Google Scholar 

  2. D.E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3rd edn. (Addison-Wesley, Reading, 1997)

    MATH  Google Scholar 

  3. IEEE Standard 754-2008 for Binary Floating-Point Arithmetic, IEEE 2008; see also http://grouper.ieee.org/groups/754/

  4. D. Goldberg, What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv. 23, 5 (1991). An up-to-date version is accessible as Appendix D of the Sun Microsystems Numerical Computation Guide. http://docs.sun.com/source/806-3568

    Article  Google Scholar 

  5. M.H. Holmes, Introduction to Numerical Methods in Differential Equations (Springer, New York, 2007) (Example in Appendix A.3.1)

    Book  MATH  Google Scholar 

  6. D. O’Connor, Floating Point Arithmetic. Dublin Area Mathematics Colloquium, March 5, 2005.

    Google Scholar 

  7. GNU Multi Precision (GMP), free library for arbitrary precision arithmetic. http://gmplib.org

  8. H.J. Wilkinson, Rounding Errors in Algebraic Processes (Dover, Mineola, 1994)

    MATH  Google Scholar 

  9. D.E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd edn. (Addison-Wesley, Reading, 1980)

    Google Scholar 

  10. J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, 3rd edn. Texts in Applied Mathematics, vol. 12 (Springer, Berlin, 2002)

    MATH  Google Scholar 

  11. M.J.D. Powell, Approximation Theory and Methods (Cambridge University Press, Cambridge, 1981)

    MATH  Google Scholar 

  12. C. Hastings, Approximations for Digital Computers (Princeton University Press, Princeton, 1955), which is a pedagogical jewel; a seemingly simplistic outward appearance hides a true treasure-trove of ideas yielding one insight followed by another

    MATH  Google Scholar 

  13. W. Fraser, A survey of methods of computing minimax and near-minimax polynomial approximations for functions of a single variable. J. Assoc. Comput. Mach. 12, 295 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  14. H.M. Antia, Numerical Methods for Scientists and Engineers, 2nd edn. (Birkhäuser, Basel, 2002); see Sects. 9.11 and 9.12

    Google Scholar 

  15. R. Pachón, L.N. Trefethen, Barycentric-Remez algorithms for best polynomial approximation in the chebfun system. Oxford University Computing Laboratory, NAG Report No. 08/20

    Google Scholar 

  16. G.A. Baker, P. Graves-Morris, Padé Approximants, 2nd edn. Encyclopedia of Mathematics and Its Applications, vol. 59 (Cambridge University Press, Cambridge, 1996)

    Book  MATH  Google Scholar 

  17. P. Wynn, On the convergence and stability of the epsilon algorithm. SIAM J. Numer. Anal. 3, 91 (1966)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. P.R. Graves-Morris, D.E. Roberts, A. Salam, The epsilon algorithm and related topics. J. Comput. Appl. Math. 12, 51 (2000)

    Article  MathSciNet  Google Scholar 

  19. W. van Dijk, F.M. Toyama, Accurate numerical solutions of the time-dependent Schrödinger equation. Phys. Rev. E 75, 036707 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  20. K. Kormann, S. Holmgren, O. Karlsson, J. Chem. Phys. 128, 184101 (2008)

    Article  ADS  Google Scholar 

  21. C. Lubich, in Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, ed. by J. Grotendorst, D. Marx, A. Muramatsu. NIC Series, vol. 10 (John von Neumann Institute for Computing, Jülich, 2002), p. 459

    Google Scholar 

  22. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, 10th edn. (Dover, Mineola, 1972)

    MATH  Google Scholar 

  23. I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series and Products (Academic Press, New York, 1980)

    Google Scholar 

  24. P.C. Abbott, Asymptotic expansion of the Keesom integral. J. Phys. A, Math. Theor. 40, 8599 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. M. Battezzati, V. Magnasco, Asymptotic evaluation of the Keesom integral. J. Phys. A, Math. Theor. 37, 9677 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. T.M. Apostol, Mathematical Analysis, 2nd edn. (Addison-Wesley, Reading, 1974)

    MATH  Google Scholar 

  27. P.D. Miller, Applied Asymptotic Analysis. Graduate Studies in Mathematics, vol. 75 (Am. Math. Soc., Providence, 2006)

    MATH  Google Scholar 

  28. A. Erdélyi, Asymptotic Expansions (Dover, New York, 1987)

    Google Scholar 

  29. R. Wong, Asymptotic Approximations of Integrals (SIAM, Philadelphia, 2001)

    Book  MATH  Google Scholar 

  30. J. Wojdylo, Computing the coefficients in Laplace’s method. SIAM Rev. 48, 76 (2006). While [29] in Sect. II.1 describes the classical way of computing the coefficients c s by series inversion, this article discusses a modern explicit method

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. F.J.W. Olver, Asymptotics and Special Functions (Peters, Wellesley, 1997)

    MATH  Google Scholar 

  32. S. Wolfram, Wolfram Mathematica. http://www.wolfram.com

  33. N. Bleistein, R.A. Handelsman, Asymptotic Expansion of Integrals (Holt, Reinhart and Winston, New York, 1975)

    Google Scholar 

  34. L.D. Landau, E.M. Lifshitz, Course in Theoretical Physics, Vol. 3: Quantum Mechanics, 3rd edn. (Pergamon, Oxford, 1991)

    Google Scholar 

  35. P.M. Morse, H. Feshbach, Methods of Theoretical Physics, vol. 1 (McGraw-Hill, Reading, 1953)

    MATH  Google Scholar 

  36. A.D. Polyanin, V.F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, 2nd edn. (Chapman & Hall/CRC, Boca Raton, 2003), p. 215

    MATH  Google Scholar 

  37. J. Boos, Classical and Modern Methods in Summability (Oxford University Press, Oxford, 2000)

    MATH  Google Scholar 

  38. T.J.I’a. Bromwich, An Introduction to the Theory of Infinite Series (Macmillan, London, 1955). The collection of formulas and hints contained in the book remains indispensable

    Google Scholar 

  39. A. Sofo, Computational Techniques for the Summation of Series (Kluwer Academic/Plenum, New York, 2003)

    Book  MATH  Google Scholar 

  40. M. Petkovšek, H. Wilf, D. Zeilberger, A=B (Peters, Wellesley, 1996)

    Google Scholar 

  41. D.M. Priest, On properties of floating-point arithmetics: numerical stability and the cost of accurate computations. PhD thesis, University of California at Berkeley (1992)

    Google Scholar 

  42. N.J. Higham, The accuracy of floating point summation. SIAM J. Sci. Comput. 14, 783 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  43. J. Demmel, Y. Hida, Accurate and efficient floating point summation. SIAM J. Sci. Comput. 25, 1214 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. W. Kahan, Further remarks on reducing truncation errors. Commun. ACM 8, 40 (1965)

    Article  Google Scholar 

  45. P. Linz, Accurate floating-point summation. Commun. ACM 13, 361 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  46. T.O. Espelid, On floating-point summation. SIAM Rev. 37, 603 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  47. I.J. Anderson, A distillation algorithm for floating-point summation. SIAM J. Sci. Comput. 20, 1797 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  48. G. Bohlender, Floating point computation of functions with maximum accuracy. IEEE Trans. Comput. 26, 621 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  49. D. Laurie, Convergence acceleration, in The SIAM 100-Digit Challenge. A Study in High-Accuracy Numerical Computing, ed. by F. Bornemann, D. Laurie, S. Wagon, J. Waldvögel (SIAM, Philadelphia, 2004), pp. 227–261

    Google Scholar 

  50. C. Brezinski, M.R. Zaglia, Extrapolation Methods (North-Holland, Amsterdam, 1991)

    MATH  Google Scholar 

  51. C. Brezinski, Convergence acceleration during the 20th century. J. Comput. Appl. Math. 122, 1 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. E.J. Weniger, Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series. Comput. Phys. Rep. 10, 189 (1989)

    Article  ADS  Google Scholar 

  53. K. Knopp, Theory and Application of Infinite Series (Blackie, London, 1951)

    MATH  Google Scholar 

  54. http://www.nr.com/webnotes?5. The implementation described here is particularly attractive, as it automatically changes N and J such that the required maximum error is achieved most rapidly

  55. H. Cohen, F.R. Villegas, D. Zagier, Convergence acceleration of alternating series. Exp. Math. 9, 4 (2000)

    Article  Google Scholar 

  56. H.H.H. Homeier, Scalar Levin-type sequence transformations. J. Comput. Appl. Math. 122, 81 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. GSL (GNU Scientific Library). http://www.gnu.org/software/gsl

  58. G. Marsaglia, Evaluation of the normal distribution. J. Stat. Softw. 11, 1 (2004)

    Google Scholar 

  59. J.F. Hart et al., Computer Approximations (Wiley, New York, 1968)

    MATH  Google Scholar 

  60. W.J. Cody, Rational Chebyshev approximations for the error function. Math. Comput. 23, 631 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  61. J.R. Philip, The function inverfc θ. Aust. J. Phys. 13, 13 (1960)

    MathSciNet  ADS  MATH  Google Scholar 

  62. L. Carlitz, The inverse of the error function. Pacific J. Math. 13 (1963)

    Google Scholar 

  63. O. Vallée, M. Soares, Airy Functions and Applications to Physics (Imperial College Press, London, 2004)

    MATH  Google Scholar 

  64. G. Szegö, Orthogonal Polynomials (Am. Math. Soc., Providence, 1939)

    Book  Google Scholar 

  65. G.N. Watson, Theory of Bessel Functions (Cambridge University Press, Cambridge, 1922)

    MATH  Google Scholar 

  66. W.R. Gibbs, Computation in Modern Physics (World Scientific, Singapore, 1994). Sections 12.4 and 10.4

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Širca, S., Horvat, M. (2012). Basics of Numerical Analysis. In: Computational Methods for Physicists. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32478-9_1

Download citation

Publish with us

Policies and ethics