Skip to main content

Electrodynamic Theory of Three-Dimensional Metamaterials of Hierarchically Organized Nanoparticles

  • Chapter
Amorphous Nanophotonics

Abstract

To date, the most promising candidate structures for exhibiting photo-induced magnetism and negative refractive index in the optical regime are the so called Mie resonance-based metamaterials which consist of scatterers of simple geometrical shape, e.g., spherical or cylindrical, and are made of a high-index material. When such a structure is illuminated by an electromagnetic wave of frequency around the Mie resonance of a single scatterer, strong polarization currents are generated within the surface of the scatterers resulting in a macroscopic magnetization of the metamaterial. Due to the lack of naturally occurring materials with high refractive index in the optical regime, one can envisage a metamaterial which consists of meta-atoms that are clusters of metallic nanoparticles wherein strong polarization currents can also be induced under illumination. These type of metamaterials are hierarchically organized as they possess two length scales: the inter-particle distance within the cluster and the inter-cluster separation within the metamaterial. The nanoparticle clusters can be formed by direct or template-assisted self-organization and are generally amorphous due to the random positioning of the nanoparticles in air or within a cavity. The amorphous arrangement of such strongly scattering objects constitutes a major challenge for the field of theoretical and computational nanophotonics. In order to tackle this computational problem in the framework of metamaterials, we adopt a hierarchical theoretical strategy in proportion to the hierarchical organization of such structures. To this end, we develop a layer-multiple-scattering formalism for electromagnetic waves in order to model the optical response of metamaterials formed as collections of cavities filled by amorphous clusters of hierarchically organized spherical nanoparticles. It is based on a three-stage process where we take fully into account all the multiple-scattering processes experienced by photons: (a) among the particles of the cluster inside the cavity, (b) between the cluster and the cavity and (c) among the cavities (containing the clusters) within the metamaterial. We demonstrate the applicability of the method to the case of a silica-inverted opal whose voids contain clusters of gold nanoparticles. We find, in particular, such a metamaterial acts as a super absorber over a wide frequency range, from 2–4 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory 47, 2075 (1999)

    Article  Google Scholar 

  2. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  3. M.C.K. Wiltshire, J.B. Pendry, I.R. Young, D.J. Larkman, D.J. Gilderdale, J.V. Hajnal, Science 291, 849 (2001)

    Article  ADS  Google Scholar 

  4. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Science 314, 5801 (2006)

    Article  Google Scholar 

  5. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008)

    Article  ADS  Google Scholar 

  6. L.V. Panina, A.N. Grigorenko, D.P. Makhnovskiy, Phys. Rev. B 66, 155411 (2002)

    Article  ADS  Google Scholar 

  7. T.J. Yen et al., Science 303, 1494 (2004)

    Article  ADS  Google Scholar 

  8. T.J. Yen et al., Science 303, 1494 (2004)

    Article  ADS  Google Scholar 

  9. V.M. Shalaev et al., Opt. Lett. 30, 3356 (2005)

    Article  ADS  Google Scholar 

  10. S. Linden et al., Science 306, 1351 (2004)

    Article  ADS  Google Scholar 

  11. C.M. Soukoulis, S. Linden, M. Wegener, Science 315, 788 (2007)

    Article  Google Scholar 

  12. V.M. Shalaev, Nat. Photonics 1, 41 (2007)

    Article  ADS  Google Scholar 

  13. N. Liu et al., Adv. Mater. 19, 3628 (2007)

    Article  Google Scholar 

  14. N. Liu et al., Nat. Mater. 7, 31 (2008)

    Article  ADS  Google Scholar 

  15. N. Liu, H. Liu, S. Zhu, H. Giessen, Nat. Photonics 3, 157 (2009)

    Article  ADS  Google Scholar 

  16. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001)

    Article  ADS  Google Scholar 

  17. C.G. Parazzoli, R.B. Greegor, K. Li, B.E.C. Koltenbah, M. Tanielian, Phys. Rev. Lett. 90, 107401 (2003)

    Article  ADS  Google Scholar 

  18. A.A. Houck, J.B. Brock, I.L. Chuang, Phys. Rev. Lett. 90, 137401 (2003)

    Article  ADS  Google Scholar 

  19. S. O’Brien, J.B. Pendry, J. Phys. Condens. Matter 14, 4035 (2002)

    Article  ADS  Google Scholar 

  20. K.C. Huang, M.L. Povinelli, J.D. Joannopoulos, Appl. Phys. Lett. 85, 543 (2004)

    Article  ADS  Google Scholar 

  21. C.L. Holloway, E.F. Kuester, J. Baker-Jarvis, P. Kabos, IEEE Trans. Antennas Propag. 51, 2596 (2003)

    Article  ADS  Google Scholar 

  22. V. Yannopapas, A. Moroz, J. Phys. Condens. Matter 17, 3717 (2005)

    Article  ADS  Google Scholar 

  23. M.S. Wheeler, J.S. Aitchison, M. Mojahedi, Phys. Rev. B 72, 193103 (2005)

    Article  ADS  Google Scholar 

  24. M.S. Wheeler, J.S. Aitchison, M. Mojahedi, Phys. Rev. B 73, 045105 (2006)

    Article  ADS  Google Scholar 

  25. L. Jylhä, I. Kolmakov, S. Maslovski, S. Tretyakov, J. Appl. Phys. 99, 043102 (2006)

    Article  ADS  Google Scholar 

  26. T.G. MacKay, A. Lakhtakia, J. Appl. Phys. 100, 063533 (2006)

    Article  ADS  Google Scholar 

  27. V. Yannopapas, N.V. Vitanov, Phys. Rev. B 74, 193304 (2006)

    Article  ADS  Google Scholar 

  28. V. Yannopapas, Phys. Rev. B 75, 035112 (2007)

    Article  ADS  Google Scholar 

  29. A.G. Kussow, A. Akyurtlu, A. Semichaevsky, N. Angkawisittpan, Phys. Rev. B 76, 195123 (2007)

    Article  ADS  Google Scholar 

  30. C.W. Qiu, L. Gao, J. Opt. Soc. Am. B 25, 1728 (2008)

    Article  ADS  Google Scholar 

  31. Q. Zhao, J. Zhou, F. Zhang, D. Lippens, Mater. Today 12, 60 (2009)

    Article  Google Scholar 

  32. L. Peng, L. Ran, H. Chen, H. Zhang, J.A. Kong, T.M. Grzegorczyk, Phys. Rev. Lett. 98, 157403 (2007)

    Article  ADS  Google Scholar 

  33. B.I. Popa, S.A. Cummer, Phys. Rev. Lett. 100, 207401 (2008)

    Article  ADS  Google Scholar 

  34. Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, L. Li, Phys. Rev. Lett. 101, 027402 (2008)

    Article  ADS  Google Scholar 

  35. Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, Y. Meng, Appl. Phys. Lett. 92, 051106 (2008)

    Article  ADS  Google Scholar 

  36. O. Acher, M. Ledieu, A. Bardaine, F. Levassort, Appl. Phys. Lett. 93, 032501 (2008)

    Article  ADS  Google Scholar 

  37. O. Acher, J.H. Le Gallou, M. Ledieu, Metamaterials 2, 18 (2008)

    Article  ADS  Google Scholar 

  38. X.Q. Lin et al., Appl. Phys. Lett. 92, 131904 (2008)

    Article  ADS  Google Scholar 

  39. J.A. Schuller, R. Zia, T. Taubner, M.L. Brongersma, Phys. Rev. Lett. 99, 107401 (2007)

    Article  ADS  Google Scholar 

  40. C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, T. Scharf, Phys. Rev. Lett. 99, 017401 (2007)

    Article  ADS  Google Scholar 

  41. Q. Wu, W. Park, Appl. Phys. Lett. 92, 153114 (2008)

    Article  ADS  Google Scholar 

  42. W. Park, Q. Wu, Solid State Commun. 146, 221 (2008)

    Article  ADS  Google Scholar 

  43. H.J. Lee, Q. Wu, W. Park, Opt. Lett. 34, 443 (2009)

    Article  ADS  Google Scholar 

  44. V.A. Tamma, J.H. Lee, Q. Wu, W. Park, Appl. Opt. 49, A11 (2010)

    Article  ADS  Google Scholar 

  45. X. Zeng et al., Adv. Mater. 21, 1746 (2009)

    Article  Google Scholar 

  46. N. Stefanou, V. Karathanos, A. Modinos, J. Phys. Condens. Matter 4, 7389 (1992)

    Article  ADS  Google Scholar 

  47. N. Stefanou, V. Yannopapas, A. Modinos, Comput. Phys. Commun. 113, 49 (1998)

    Article  ADS  MATH  Google Scholar 

  48. N. Stefanou, V. Yannopapas, A. Modinos, Comput. Phys. Commun. 132, 189 (2000)

    Article  ADS  MATH  Google Scholar 

  49. G. Gantzounis, N. Stefanou, Phys. Rev. B 73, 035115 (2006)

    Article  ADS  Google Scholar 

  50. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975)

    MATH  Google Scholar 

  51. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  52. R. Sainidou, N. Stefanou, A. Modinos, Phys. Rev. B 69, 064301 (2004)

    Article  ADS  Google Scholar 

  53. V. Yannopapas, N.V. Vitanov, Phys. Rev. B 75, 115124 (2007)

    Article  ADS  Google Scholar 

  54. M. Inoue, K. Ohtaka, J. Phys. Soc. Jpn. 52, 3853 (1983)

    Article  ADS  Google Scholar 

  55. H. Xu, E.J. Bjerneld, M. Käll, L. Börjesson, Phys. Rev. Lett. 83, 4357 (1999)

    Article  ADS  Google Scholar 

  56. H. Xu, J. Aizpurua, M. Käll, P. Apell, Phys. Rev. E 62, 4318 (2000)

    Article  ADS  Google Scholar 

  57. H. Xu, M. Käll, Phys. Rev. Lett. 89, 246802 (2002)

    Article  ADS  Google Scholar 

  58. H. Xu, J. Opt. Soc. Am. A 21, 804 (2004)

    Article  ADS  Google Scholar 

  59. K. Zhao, H. Xu, B. Gu, Z. Zhang, J. Chem. Phys. 125, 081102 (2006)

    Article  ADS  Google Scholar 

  60. Z. Li, H. Xu, J. Quant. Spectrosc. Radiat. Transf. 103, 394 (2007)

    Article  ADS  Google Scholar 

  61. J.L. Beeby, J. Phys. C 1, 82 (1968)

    Article  ADS  Google Scholar 

  62. A. Gonis, Green Functions for Ordered and Disordered Systems (North-Holland, Amsterdam, 1992)

    MATH  Google Scholar 

  63. N. Stefanou, A. Modinos, J. Phys. Condens. Matter 3, 8135 (1991)

    Article  ADS  Google Scholar 

  64. N. Stefanou, A. Modinos, J. Phys. Condens. Matter 3, 8149 (1991)

    Article  ADS  Google Scholar 

  65. A. Modinos, V. Yannopapas, N. Stefanou, Phys. Rev. B 61, 8099 (2000)

    Article  ADS  Google Scholar 

  66. V. Yannopapas, Phys. Rev. B 75, 035112 (2007)

    Article  ADS  Google Scholar 

  67. R.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  68. V. Yannopapas, Phys. Rev. B 73, 113108 (2006)

    Article  ADS  Google Scholar 

  69. V.M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films (Springer, Heidelberg, 2000)

    Google Scholar 

  70. K. Aydin, V.E. Ferry, R.M. Briggs, H.A. Atwater, Nat. Commun. (2011). doi:10.1038/ncomms1528

    Google Scholar 

  71. J.G. Fleming, S.Y. Lin, I. El-Kady, R. Biswas, K.M. Ho, Nature (London) 417, 52 (2002)

    Article  ADS  Google Scholar 

  72. M.U. Pralle, N. Moelders, M.P. McNeal, I. Puscasu, A.C. Greenwald, J.T. Daly, E.A. Johnson, T. George, D.S. Choi, I. El-Kady, R. Biswas, Appl. Phys. Lett. 81, 4685 (2002)

    Article  ADS  Google Scholar 

  73. I. Celanovic, F.O. Sullivan, M. Ilak, J. Kassakian, D. Perreault, Opt. Lett. 29, 863 (2004)

    Article  ADS  Google Scholar 

  74. A. Narayanaswamy, G. Chen, Phys. Rev. B 70, 125101 (2004)

    Article  ADS  Google Scholar 

  75. S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, G. Albrand, Appl. Phys. Lett. 86, 261101 (2005)

    Article  ADS  Google Scholar 

  76. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondia, G.A. Ozin, O. Toader, H.M. van Driel, Nature (London) 405, 437 (2000)

    Article  ADS  Google Scholar 

  77. N. Shalkevich, A. Shalkevich, L. Si-Ahmed, T. Bürgi, Phys. Chem. Chem. Phys. 11, 10175 (2009)

    Article  Google Scholar 

  78. S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, F. Lederer, Opt. Express 19, 9607 (2011)

    Article  ADS  Google Scholar 

  79. A. Modinos, Physica A 141, 575 (1987)

    Article  ADS  Google Scholar 

  80. G. Frens, Nat. Phys. Sci. 241, 20 (1973)

    ADS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Seven Framework Programme (FP7/2007-2013) under Grant Agreement No. 228455-NANOGOLD (Self-organized nanomaterials for tailored optical and electrical properties).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilios Yannopapas .

Editor information

Editors and Affiliations

Appendix

Appendix

The matrix Ω for a vector field is given by [52, 79]

(5.65)
(5.66)

where

$$ \psi_l=\sqrt{l(l+1)} $$
(5.67)
$$ \alpha_l^m=\frac{1}{2} \bigl[(l-m) (l+m+1) \bigr]^{1/2} $$
(5.68)
$$ \gamma_l^m=\frac{1}{2}\bigl[(l+m) (l+m-1) \bigr]^{1/2}\big/\bigl[(2l-1) (2l+1)\bigr]^{1/2} $$
(5.69)
$$ \zeta_l^m=\bigl[(l+m) (l-m)\bigr]^{1/2}\big/ \bigl[(2l-1) (2l+1)\bigr]^{1/2}. $$
(5.70)

\(G_{LL'} ({\bf R}_{nn'};q_{h})\) transforms an outgoing scalar spherical wave about \({\bf R}_{n'}\) to a series of incoming scalar spherical waves around \({\bf R}_{n}\). It is given by

(5.71)

with

$$ B_{lm}\bigl(l''m'';l'm' \bigr)=\int d\varOmega Y_{lm}(\hat{{\bf r}}) Y_{l' -m'}(\hat{{\bf r}}) Y_{l''m''}(\hat{{\bf r}}). $$
(5.72)

\(Y_{lm}(\hat{{\bf r}})\) are the usual scalar spherical harmonics [50].

The matrix Ξ for a vector field is given by [52, 79]

(5.73)
(5.74)

\(\xi_{LL'} ({\bf R}_{nn'};q_{h})\) transforms an outgoing (incoming) scalar spherical wave about \({\bf R}_{n'}\) to a series of outgoing (incoming) scalar spherical waves around \({\bf R}_{n}\) [see (5.25) and (5.26)]. It is given by

(5.75)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yannopapas, V., Vanakaras, A.G., Photinos, D.J. (2013). Electrodynamic Theory of Three-Dimensional Metamaterials of Hierarchically Organized Nanoparticles. In: Rockstuhl, C., Scharf, T. (eds) Amorphous Nanophotonics. Nano-Optics and Nanophotonics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32475-8_5

Download citation

Publish with us

Policies and ethics