Skip to main content

Active Plasmonics in Self-organized Soft Materials

  • Chapter
Amorphous Nanophotonics

Part of the book series: Nano-Optics and Nanophotonics ((NON))

Abstract

In this chapter we show several possibilities for obtaining active plasmonics in self-organized amorphous materials. The starting point is a brief theoretical description of the physical mechanisms that allow such a tunability. Afterwards, it follows an overview of the up-to-date results obtained in this direction. Several proof-of-concept prototypes have been successfully fabricated and are reported as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.M. Shalaev, S. Kawata, Nanophotonics with Surface Plasmons. Advances in Nano-Optics and Nano-Photonics (Elsevier, Amsterdam, 2007)

    Google Scholar 

  2. T.W. Ebbesen, C. Genet, S.I. Bozhevolnyi, Phys. Today 61, 44 (2008)

    Article  ADS  Google Scholar 

  3. J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Nat. Mater. 7, 442 (2008)

    Article  ADS  Google Scholar 

  4. L. Childress, J.M. Taylor, A.S. Sorensen, M.D. Lukin, Phys. Rev. A 72, 052330 (2005)

    Article  ADS  Google Scholar 

  5. J. Gersten, A. Nitzan, J. Chem. Phys. 73, 3023 (1980)

    Article  ADS  Google Scholar 

  6. S. Nie, S.R. Emory, Science 275, 1102 (1997)

    Article  Google Scholar 

  7. M. Xiang, X. Xu, F. Liu, N. Li, K. Li, J. Phys. Chem. B 113, 2734 (2009)

    Article  Google Scholar 

  8. T. Okamoto, T. Yamaguchi, J. Phys. Chem. B 107, 10321 (2003)

    Article  Google Scholar 

  9. G. Mie, Ann. Phys. 25, 377 (1908)

    Article  MATH  Google Scholar 

  10. M.K. Kinnan, G. Chumanov, J. Phys. Chem. C 114, 7496 (2010)

    Article  Google Scholar 

  11. R. Pratibha, W. Park, I. Smalyukh, J. Appl. Phys. 107, 063511 (2010)

    Article  ADS  Google Scholar 

  12. P.A. Kossyrev, A. Yin, S.G. Cloutier, D.A. Cardimona, D. Huang, P.M. Alsing, J.M. Xu, Nano Lett. 5, 1978 (2005)

    Article  ADS  Google Scholar 

  13. T. Hegmann, H. Qi, V.M. Marx, J. Inorg. Organomet. Polym. Mater. 17, 483 (2007)

    Article  Google Scholar 

  14. M. Mitov, C. Portet, C. Bourgerette, E. Snoeck, M. Verelst, Nat. Mater. 1, 229 (2002)

    Article  ADS  Google Scholar 

  15. Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, I.I. Smalyukh, Nano Lett. 10, 1347 (2010)

    Article  ADS  Google Scholar 

  16. Y.J. Liu, Q. Hao, J.S.T. Smalley, J. Liou, I.C. Khoo, T.J. Huang, Appl. Phys. Lett. 97, 1 (2010)

    Google Scholar 

  17. L. De Sio, S. Ferjani, G. Strangi, C. Umeton, R. Bartolino, Soft Matter 7, 3739 (2011)

    Article  ADS  Google Scholar 

  18. R. Caputo, A.V. Sukhov, A. Veltri, C. Umeton, J. Opt. Soc. Am. B 21, 1939 (2004)

    Article  ADS  Google Scholar 

  19. http://www.harima.co.jp

  20. K. Maekawa, K. Yamasaki, T. Niizeki, M. Mita, Y. Matsuba, N. Terada, H. Saito, Mater. Sci. Forum 638–642, 2085 (2010)

    Article  Google Scholar 

  21. http://www.merck.de

  22. G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, Phys. Rev. Lett. 94, 063903 (2005)

    Article  ADS  Google Scholar 

  23. S. Link, M.A. El-Sayed, J. Phys. Chem. B 103, 4212 (1999)

    Article  Google Scholar 

  24. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  25. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edn. (Clarendon Press, Oxford, 1993)

    Google Scholar 

  26. F. Tam, G.P. Goodrich, B.R. Johnson, N.J. Halas, Nano Lett. 7, 496 (2007)

    Article  ADS  Google Scholar 

  27. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1996)

    Google Scholar 

  28. L. De Sio, R. Caputo, U. Cataldi, C. Umeton, J. Mater. Chem. 21(47), 18967 (2011)

    Article  Google Scholar 

  29. L. De Sio, S. Serak, N. Tabiryan, C. Umeton, J. Mater. Chem. 21, 6811 (2011)

    Article  Google Scholar 

  30. K.M. Lee, H. Koerner, R.A. Vaia, T.J. Bunning, T.J. White, Macromolecules 43(19), 8185 (2010)

    Article  Google Scholar 

  31. T. Ikeda, O. Tsutsumi, Science 268, 187 (1995)

    Article  Google Scholar 

  32. Y.J. Liu, Y.B. Zheng, J. Liou, I.-K. Chiang, I.C. Khoo, T.J. Huang, J. Phys. Chem. 115, 7717 (2011)

    Google Scholar 

  33. R. Caputo, L. De Sio, A.V. Sukhov, A. Veltri, C. Umeton, Opt. Lett. 29, 1261 (2004)

    Article  ADS  Google Scholar 

  34. Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I.C. Khoo, T.J. Huang, Appl. Phys. Lett. 100, 053119 (2012)

    Article  ADS  Google Scholar 

  35. B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. Khoo, S. Chen, T.J. Huang, Opt. Express 19, 15221 (2011)

    Article  ADS  Google Scholar 

  36. C.G. Hu, Z.Y. Zhao, X.N. Chen, X.G. Luo, Opt. Express 17, 11039 (2009)

    Article  ADS  Google Scholar 

  37. Z.H. Jiang, S. Yun, F. Toor, D.H. Werner, T.S. Mayer, ACS Nano 5, 4641 (2011)

    Article  Google Scholar 

  38. K.A. Willets, R.O. Van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007)

    Article  ADS  Google Scholar 

  39. I.C. Khoo, J. Liou, M.V. Stinger, Mol. Cryst. Liq. Cryst. 527, 109 (2010)

    Article  Google Scholar 

  40. I.C. Khoo, J.H. Park, J.D. Liou, J. Opt. Soc. Am. B 25, 1931 (2008) and references therein

    Article  ADS  Google Scholar 

  41. U.A. Hrozhyk, S.V. Serak, N.V. Tabiryan, L. Hoke, D.M. Steeves, B.R. Kimball, Opt. Express 18, 8697 (2010)

    Article  Google Scholar 

  42. I.C. Khoo, Phys. Rep. 471, 221 (2009)

    Article  ADS  Google Scholar 

  43. M.A. Correa-Duarte, V. Salgueiriño-Maceira, A. Rinaldi, K. Sieradzki, M. Giersig, L.M. Liz-Marzan, Gold Bull. 40(1), 6 (2007)

    Article  Google Scholar 

  44. M.A. Correa-Duarte, M. Giersig, N.A. Kotov, L.M. Liz-Marzan, Langmuir 14, 6430 (1998)

    Article  Google Scholar 

  45. U. Cataldi, P. Cerminara, L. De Sio, R. Caputo, C.P. Umeton, Mol. Cryst. Liq. Cryst. 558, 22 (2012)

    Article  Google Scholar 

  46. H.A. Atwater, A. Polman, Nat. Mater. 9, 205 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Our sincere thanks go to Dr. Toralf Scharf and Prof. Carsten Rockstuhl for the fruitful collaboration in the framework of the NANOGOLD project. A special thank to Prof. Iam-Choon Khoo and Prof. Miguel Correa-Duarte for their helpfulness in writing this chapter. Finally, we acknowledge that part of the research leading to reported results has received funding from the European Union’s Seven Framework Programme (FP7/2007-2013) under grant agreement No. 228455.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Caputo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Caputo, R., De Sio, L., Cataldi, U., Umeton, C. (2013). Active Plasmonics in Self-organized Soft Materials. In: Rockstuhl, C., Scharf, T. (eds) Amorphous Nanophotonics. Nano-Optics and Nanophotonics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32475-8_12

Download citation

Publish with us

Policies and ethics