Skip to main content

Random Light Scattering

  • Chapter
Book cover Amorphous Nanophotonics

Part of the book series: Nano-Optics and Nanophotonics ((NON))

  • 1446 Accesses

Abstract

This chapter presents optical properties of surface textures without any long range order in their geometry. Such textures are usually called random, as opposed to periodic ones like gratings. The random nature is extremely beneficial for applications where the optical response extends over a wide frequency range; suitable operation over an extended spectral domain is thus ensured by the absence of a preferential period, which would otherwise yield undesired selectivity of light scattering into a certain angle for a fixed frequency. To introduce the reader to this burgeoning field in the context of amorphous nanophotonics, this chapter starts by briefly introducing volume and surface scattering. After introducing a few random surface textures of technological importance, Sect. 11.3 discusses the statistical description of random surfaces in terms of root mean square roughness and autocorrelation length. Light scattering is discussed in terms of scalar scattering theory in Sect. 11.4. In Sect. 11.5 a Fourier theory is presented which avoids some of the limitations of scalar theory. Finally, Sect. 11.6 illustrates the application of random surfaces and the description of their scattering properties in thin film solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330(3), 377–445 (1908)

    Article  Google Scholar 

  2. K.E. Bean, Anisotropic etching of silicon. IEEE Trans. Electron Devices 25(10), 1185–1193 (1978)

    Article  Google Scholar 

  3. P. Campbell, M. Green, Light trapping properties of pyramidally textured surfaces. J. Appl. Phys. 62(1), 243–249 (1987)

    Article  ADS  Google Scholar 

  4. O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, H.W. Schock, Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells. Thin Solid Films 351(1–2), 247–253 (1999)

    Article  ADS  Google Scholar 

  5. J. Müller, B. Rech, J. Springer, M. Vanecek, TCO and light trapping in silicon thin film solar cells. Sol. Energy 77(6), 917–930 (2004)

    Article  Google Scholar 

  6. M. Hirasaka, K. Suzuki, K. Nakatani, M. Asano, M. Yano, H. Okaniwa, Design of textured Al electrode for a hydrogenated amorphous silicon solar cell. Sol. Energy Mater. 20(1–2), 99–110 (1990)

    Article  Google Scholar 

  7. A. Banerjee, S. Guha, Study of back reflectors for amorphous-silicon alloy solar-cell application. J. Appl. Phys. 69(2), 1030–1035 (1991)

    Article  ADS  Google Scholar 

  8. H. Sakai, T. Yoshida, T. Hama, Y. Ichikawa, Effects of surface morphology of transparent electrode on the open-circuit voltage in a-Si:H solar cells. Jpn. J. Appl. Phys. 29 (part 1), 630–635 (1990)

    Article  ADS  Google Scholar 

  9. K. Sato, Y. Gotoh, Y. Hayashi, K. Adachi, H. Nishimura, Improvement of textured SnO2:F films for a-Si solar cells. Reports of the Research Lab, Asahi Glass Co 40(2), 233–241 (1990)

    Google Scholar 

  10. J.A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J. Vac. Sci. Technol. 11(4), 666–670 (1974)

    Article  ADS  Google Scholar 

  11. S. Faÿ, U. Kroll, C. Bucher, E. Vallat-Sauvain, A. Shah, Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells: temperature-induced morphological changes. Sol. Energy Mater. Sol. Cells 86(3), 385–397 (2005)

    Article  Google Scholar 

  12. S. Faÿ, J. Steinhauser, N. Oliveira, E. Vallat-Sauvain, C. Ballif, Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells. Thin Solid Films 515(24), 8558–8561 (2007)

    Article  ADS  Google Scholar 

  13. J. Bailat, D. Dominé, R. Schlüchter, J. Steinhauser, S. Faÿ, F. Freitas, C. Bucher, L. Feitknecht, X. Niquille, R. Tscharner, A. Shah, C. Ballif, High efficiency pin microcrystalline and micromorph thin film silicon solar cells deposited on LPCVD ZnO coated glass substrates, in Proc. 4th World PVSEC, 2006, Hawaii (2006), pp. 1533–1536

    Google Scholar 

  14. J. Elson, J. Bennett, Relation between the angular dependence of scattering and the statistical properties of optical surfaces. J. Opt. Soc. Am. 69(1), 31–47 (1979)

    Article  ADS  Google Scholar 

  15. J. Elson, J. Bennett, Calculation of the power spectral density from surface profile data. Appl. Opt. 34(1), 201–208 (1995)

    Article  ADS  Google Scholar 

  16. H.E. Bennett, J.O. Porteus, Relation between surface roughness and specular reflectance at normal incidence. J. Opt. Soc. Am. 51(2), 123–129 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  17. H. Davies, The reflection of electromagnetic waves from a rough surface. Proc. Inst. Electr. Eng. 101, 209 (1954)

    Google Scholar 

  18. S. Rice, Reflection of electromagnetic waves from slightly rough surfaces. Commun. Pure Appl. Math. 4(2–4), 351–378 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Beckmann, A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Artech House, Norwood, 1987)

    Google Scholar 

  20. A. Maradudin, Light Scattering and Nanoscale Surface Roughness (Springer, Berlin, 2007)

    Book  Google Scholar 

  21. E.R. Méndez, D. Macías, Inverse problems in optical scattering, in Light Scattering and Nanoscale Surface Roughness, ed. by A.A. Maradudin (Springer, Berlin, 2007), pp. 435–464

    Chapter  Google Scholar 

  22. C.K. Carniglia, Scalar scattering theory for multilayer optical coatings. Opt. Eng. 18(2), 104–115 (1979)

    Article  ADS  Google Scholar 

  23. M. Zeman, R. Van Swaaij, J.W. Metselaar, R.E.I. Schropp, Optical modeling of a-Si:H solar cells with rough interfaces: effect of back contact and interface roughness. J. Appl. Phys. 88, 6436 (2000)

    Article  ADS  Google Scholar 

  24. J. Krc, F. Smole, M. Topic, Analysis of light scattering in a-Si:H solar cells by a one-dimensional semi-coherent optical model. Prog. Photovolt. 11(1), 15–26 (2003)

    Article  Google Scholar 

  25. J. Krc, M. Zeman, O. Kluth, F. Smole, M. Topic, Effect of surface roughness of ZnO:Al films on light scattering in hydrogenated amorphous silicon solar cells. Thin Solid Films 426(1–2), 296–304 (2003)

    Article  ADS  Google Scholar 

  26. H. Stiebig, T. Brammer, T. Repmann, O. Kluth, N. Senoussaoui, A. Lambertz, H. Wagner, Light scattering in microcrystalline silicon thin film solar cells, in Proc. 16th EU-PVSEC, 2000, Glasgow (2000), pp. 549–552

    Google Scholar 

  27. G. Brown, V. Celli, M. Haller, A. Maradudin, A. Marvin, Resonant light scattering from a randomly rough surface. Phys. Rev. B 31(8), 4993–5005 (1985)

    Article  ADS  Google Scholar 

  28. V. Celli, A.A. Maradudin, A.M. Marvin, A.R. McGurn, Some aspects of light-scattering from a randomly rough metal surface. J. Opt. Soc. Am. A 2(12), 2225–2239 (1985)

    Article  ADS  Google Scholar 

  29. J. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, Greenwood Village, 2005)

    Google Scholar 

  30. D. Dominé, F.J. Haug, C. Battaglia, C. Ballif, Modeling of light scattering from micro- and nanotextured surfaces. J. Appl. Phys. 107, 044504 (2010)

    Article  ADS  Google Scholar 

  31. J. Harvey, C. Vernold, A. Krywonos, P. Thompson, Diffracted radiance: a fundamental quantity in nonparaxial scalar diffraction theory. Appl. Opt. 38, 6469–6481 (1999)

    Article  ADS  Google Scholar 

  32. J. Harvey, Fourier treatment of near-field scalar diffraction theory. Am. J. Phys. 47, 974 (1979)

    Article  ADS  Google Scholar 

  33. F.J. Haug, C. Battaglia, D. Domine, C. Ballif, Light scattering at nano-textured surfaces in thin film silicon solar cells, in Proc. 35 IEEE PVSC, 2010, Hawaii, IEEE (2010), pp. 754–759

    Google Scholar 

  34. K. Bittkau, M. Schulte, M. Klein, T. Beckers, R. Carius, Modeling of light scattering properties from surface profile in thin-film solar cells by Fourier transform techniques. Thin Solid Films 519(19), 6538–6543 (2011)

    Article  ADS  Google Scholar 

  35. C. Rockstuhl, S. Fahr, F. Lederer, F.J. Haug, T. Soderstrom, S. Nicolay, M. Despeisse, C. Ballif, Light absorption in textured thin film silicon solar cells: a simple scalar scattering approach versus rigorous simulation. Appl. Phys. Lett. 98(5), 051102 (2011)

    Article  ADS  Google Scholar 

  36. K. Jäger, M. Fischer, R. van Swaaij, M. Zeman, A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells. J. Appl. Phys. 111, 083108 (2012)

    Article  ADS  Google Scholar 

  37. J.E. Harvey, A. Krywonos, A global view of diffraction: revisited, in Proc. SPIE AM100-26, 2004, Denver (2004)

    Google Scholar 

  38. M. Schulte, K. Bittkau, K. Jäger, M. Ermes, M. Zeman, B.E. Pieters, Angular resolved scattering by a nano-textured ZnO/silicon interface. Appl. Phys. Lett. 99, 111107 (2011)

    Article  ADS  Google Scholar 

  39. D. Dominé, The role of front electrodes and intermediate reflectors in the optoelectronic properties of high-efficiency micromorph solar cells. PhD thesis, University of Neuchatel (2009)

    Google Scholar 

  40. E. Yablonovitch, G.D. Cody, Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electron Devices 29(2), 300–305 (1982)

    Article  ADS  Google Scholar 

  41. H.W. Deckman, C.R. Wronski, H. Witzke, E. Yablonovitch, Optically enhanced amorphous silicon solar cells. Appl. Phys. Lett. 42(11), 968–970 (1983)

    Article  ADS  Google Scholar 

  42. P. Sheng, A.N. Bloch, R.S. Stepleman, Wavelength-selective absorption enhancement in thin-film solar cells. Appl. Phys. Lett. 43, 579 (1983)

    Article  ADS  Google Scholar 

  43. G. Yue, L. Sivec, B. Yan, J. Yang, S. Guha, High efficiency hydrogeneated nanocrystalline silicon based solar cells deposited by optimized Ag/ZnO back reflectors, in Proc. 25th European PVSEC, 2010, Valencia (2010)

    Google Scholar 

  44. J. Bailat, L. Fesquet, J.B. Orhan, Y. Djerdidane, B. Wolf, P. Madlinger, J. Steinhauser, S. Benagli, D. Borrello, L. Castens, G. Monteduro, M. Marmelo, B. Dehbozorghi, E. Vallat-Sauvain, X. Multone, D. Romang, J.F. Boucher, J. Meier, U. Kroll, M. Despeisse, G. Bugnon, C. Ballif, S. Marjanovic, G. Kohnke, N. Borelli, K. Koch, J. Liu, R. Modavis, D. Thelen, S. Vallon, A. Zakharian, D. Weidmann, Recent developments of high-efficiency micromorph tandem solar cells in Kai-M PE-CVD reactors, in Proc. 5th World PVSEC, 2010, Valencia (2010), p. 2720

    Google Scholar 

  45. J.M. Gee, Optically enhanced absorption in thin silicon layers using photonic crystals, in Proc. 29th IEEE PVSC, 2002, New Orleans (2002), pp. 150–153

    Google Scholar 

  46. C. Battaglia, C.M. Hsu, K. Söderström, J. Escarré, F.J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. Alexander, M. Cantoni, Y. Cui, C. Ballif, Light trapping in solar cells: can periodic beat random? ACS Nano 6(3), 185 (2012)

    Article  Google Scholar 

  47. H. Keppner, J. Meier, P. Torres, D. Fischer, A. Shah, Microcrystalline silicon and micromorph tandem solar cells. Appl. Phys. A, Mater. Sci. Process. 69(2), 169–177 (1999)

    Article  ADS  Google Scholar 

  48. M. Green, P. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, Crystalline silicon on glass (CSG) thin-film solar cell modules. Sol. Energy 77(6), 857–863 (2004)

    Article  Google Scholar 

  49. J. Bailat, V. Terrazzoni-Daudrix, J. Guillet, F. Freitas, X. Niquille, A. Shah, C. Ballif, T. Scharf, R. Morf, A. Hansen, D. Fischer, Y. Ziegler, A. Closset, Recent development of solar cells on low-cost plastic substrates, in Proc. 20th European PVSEC, 2005, Barcelona (2005)

    Google Scholar 

  50. A. Bessonov, Y. Cho, S.J. Jung, E.A. Park, E.S. Hwang, J.W. Lee, M. Shin, S. Lee, Nanoimprint patterning for tunable light trapping in large-area silicon solar cells. Sol. Energy Mater. Solar Cells 95, 2886 (2011)

    Article  Google Scholar 

  51. C. Haase, H. Stiebig, Thin-film silicon solar cells with efficient periodic light trapping texture. Appl. Phys. Lett. 91(6), 061116 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the European Union, the Swiss National Science Foundation and the Swiss Federal Office for Energy. Dr. M. Python is thankfully acknowledged for recording the images in Figs. 11.2 and 11.3, Dr. K. Jäger of the Technical University of Delft provided the data for Fig. 11.13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz-Josef Haug .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haug, FJ. (2013). Random Light Scattering. In: Rockstuhl, C., Scharf, T. (eds) Amorphous Nanophotonics. Nano-Optics and Nanophotonics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32475-8_11

Download citation

Publish with us

Policies and ethics