Skip to main content

Amorphous Nanophotonics in Nature

  • Chapter
  • 1464 Accesses

Part of the book series: Nano-Optics and Nanophotonics ((NON))

Abstract

Visual appearance generates stimuli associated with many biological functions, including interspecies and intra species communication. A range of biological structural colour mechanisms has been identified. These mechanisms include highly periodic microstructures associated with bright and saturated colours, and amorphous structures which produce broadband colours and generally diffuse reflectances. In this chapter several highly functional amorphous structures found in biological systems are detailed, and their optical characteristics are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Vukusic, Optical Interference Coatings, Natural Coatings (Springer, Berlin, 2003)

    Google Scholar 

  2. R. Hooke, Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses, in Project Gutenberg (1665)

    Google Scholar 

  3. I. Newton, Opticks: Or a Treatise of the Reflexions, Refractions, Inflexions and Colours (Royal Society, London, 1704)

    Google Scholar 

  4. L. Rayleigh, On the reflection of light from a regularly stratified medium. Proc. R. Soc. Lond., a Contain. Pap. Math. Phys. Character 93(655), 565–577 (1917)

    Article  ADS  Google Scholar 

  5. L. Rayleigh, On the optical character of some brilliant animal colours. Philos. Mag. 37(217) (1919). doi:10.1080/14786440108635867

  6. P. Vukusic, J. Sambles, C. Lawrence, R. Wootton, Quantified interference and diffraction in single Morpho butterfly scales. Proc. R. Soc. Lond. B, Biol. Sci. 266(1427), 1403 (1999)

    Article  Google Scholar 

  7. T. Trzeciak, P. Vukusic, Photonic crystal fiber in the polychaete worm pherusa sp. Phys. Rev. E 80(6), 061908 (2009)

    Article  ADS  Google Scholar 

  8. C. Pouya, D. Stavenga, P. Vukusic, Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle eupholus magnificus. Opt. Express 19(12), 11355–11364 (2011)

    Article  ADS  Google Scholar 

  9. C. Mason, Structural colors in insects. I. J. Phys. Chem. 30, 383–395 (1926)

    Article  Google Scholar 

  10. H. Ghiradella, Structure of iridescent lepidopteran scales: variations on several themes. Ann. Entomol. Soc. Am. 77(6), 637–645 (1984)

    Google Scholar 

  11. H. Ghiradella, Structure of butterfly scales: patterning in an insect cuticle. Microsc. Res. Tech. 27(5), 429–438 (1994)

    Article  Google Scholar 

  12. H. Ghiradella, D. Aneshansley, T. Eisner, R. Silberglied, H. Hinton, Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales. Science 178(4066), 1214 (1972)

    Article  ADS  Google Scholar 

  13. H. Ghiradella, Hairs, bristles, and scales. Microsc. Anat. Invertebr. 11, 257–287 (1998)

    Google Scholar 

  14. M. Giraldo, D. Stavenga, Sexual dichroism and pigment localization in the wing scales of Pieris rapae butterflies. Proc. R. Soc. Lond. B, Biol. Sci. 274(1606), 97 (2007)

    Article  Google Scholar 

  15. F. Lutz, ‘Invisible’ colors of flowers and butterflies. Nat. Hist. 33, 565–576 (1933)

    Google Scholar 

  16. K. Makino, K. Satoh, M. Koike, N. Ueno, Sex in Pieris Rapae L. and the Pteridin Content of Their Wings (1952)

    Google Scholar 

  17. B. Wijnen, H. Leertouwer, D. Stavenga, Colors and pterin pigmentation of pierid butterfly wings. J. Insect Physiol. 53(12), 1206–1217 (2007)

    Article  Google Scholar 

  18. J. Kolyer, A. Reimschuessel, Scanning electron microscopy on wing scales of Colias eurytheme. J. Res. Lepid. 8, 1–15 (1970)

    Google Scholar 

  19. N. Morehouse, P. Vukusic, R. Rutowski, Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies. Proc. R. Soc. Lond. B, Biol. Sci. 274(1608), 359 (2007)

    Article  Google Scholar 

  20. N. Yagi, Note of electron microscope research on pterin pigmentation in pierid butterflies. Annot. Zool. Jpn. 27, 113–114 (1954)

    Google Scholar 

  21. R. Rutowski, J. Macedonia, N. Morehouse, L. Taylor-Taft, Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme. Proc. R. Soc. B 272(1578), 2329 (2005)

    Article  Google Scholar 

  22. D. Stavenga, S. Stowe, K. Siebke, J. Zeil, K. Arikawa, Butterfly wing colours: scale beads make white pierid wings brighter. Proc. R. Soc. Lond. B, Biol. Sci. 271(1548), 1577 (2004)

    Article  Google Scholar 

  23. P. Kubelka, F. Munk, Ein beitrag zur optik der farbanstriche. Z. Tech. Phys. 12, 593–601 (1931)

    Google Scholar 

  24. S. Luke, P. Vukusic, B. Hallam, Measuring and modelling optical scattering and the colour quality of white pierid butterfly scales. Opt. Express 17(17), 14729–14743 (2009)

    Article  ADS  Google Scholar 

  25. Y. Obara, Studies on the mating behavior of the white cabbage butterfly, Pieris rapae crucivora Boisduval. J. Comp. Physiol. A: Neuroethol. Sens. Neural Behav. Physiol. 69(1), 99–116 (1970)

    MathSciNet  Google Scholar 

  26. R. Rutowski, The use of visual cues in sexual and species discrimination by males of the small sulphur butterfly Eurema lisa (lepidoptera, pieridae). J. Comp. Physiol. A: Neuroethol. Sens. Neural Behav. Physiol. 115(1), 61–74 (1977)

    Article  Google Scholar 

  27. Y. Obara, M. Majerus, Initial mate recognition in the British cabbage butterfly, Pieris rapae rapae. Zool. Sci. 17(6), 725–730 (2000)

    Article  Google Scholar 

  28. D. Kemp, P. Vukusic, R. Rutowski, Stress-mediated covariance between nano-structural architecture and ultraviolet butterfly coloration. Ecology 20, 282–289 (2006)

    Google Scholar 

  29. S. Kinoshita, S. Yoshioka, K. Kawagoe, Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale. Proc. R. Soc. Lond. B, Biol. Sci. 269(1499), 1417 (2002)

    Article  Google Scholar 

  30. S. Yoshioka, S. Kinoshita, Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly. Proc. R. Soc. Lond. B, Biol. Sci. 273(1583), 129 (2006)

    Article  Google Scholar 

  31. A. Parker, D. Mckenzie, M. Large, Multilayer reflectors in animals using green and gold beetles as contrasting examples. J. Exp. Biol. 201(9), 1307 (1998)

    Google Scholar 

  32. J. Vigneron, J. Colomer, N. Vigneron, V. Lousse, Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera). Phys. Rev. E 72(6), 61904 (2005)

    Article  ADS  Google Scholar 

  33. A. Seago, P. Brady, J. Vigneron, T. Schultz, Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera). J. R. Soc. Interface 6(suppl 2) (2009). doi:10.1098/rsif.2008.0354.focus

  34. T. Anderson, A. Richards Jr, An electron microscope study of some structural colors of insects. J. Appl. Phys. 13, 748 (1942)

    Article  ADS  Google Scholar 

  35. C. Mason, Structural colors in insects. II. J. Phys. Chem. 31(3), 321–354 (1927)

    Article  Google Scholar 

  36. A. Parker, V. Welch, D. Driver, N. Martini, Structural colour: opal analogue discovered in a weevil. Nature 426(6968), 786–787 (2003)

    Article  ADS  Google Scholar 

  37. V. Welch, J. Vigneron, Beyond butterflies—the diversity of biological photonic crystals. Opt. Quantum Electron. 39(4), 295–303 (2007)

    Article  Google Scholar 

  38. P. Vukusic, R. Kelly, I. Hooper, A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves. J. R. Soc. Interface 6(Suppl 2), S193 (2009)

    Article  Google Scholar 

  39. M. Srinivasarao, Nano-optics in the biological world: beetles, butterflies, birds, and moths. Chem. Rev. 99(7), 1935–1962 (1999)

    Article  Google Scholar 

  40. T. Hariyama, M. Hironaka, H. Horiguchi, D.G. Stavenga, The leaf beetle, the jewel beetle and the damselfly; insects with a multilayers show case, in Structural Colors in Biological Systems: Principles and Applications (Osaka University Press, Osaka, 2005)

    Google Scholar 

  41. P. Vukusic, B. Hallam, J. Noyes, Brilliant whiteness in ultrathin beetle scales. Science 315(5810), 348 (2007)

    Article  ADS  Google Scholar 

  42. F. Steig, Ending the ‘crowding/spacing theory’ debate. J. Coat. Technol. 59, 96–97 (1987)

    Google Scholar 

  43. J. Braun, Crowding and spacing of titanium dioxide pigments. J. Coat. Technol. 60(758), 67–71 (1988)

    ADS  Google Scholar 

  44. S. Luke, B. Hallam, P. Vukusic, Structural optimization for broadband scattering in several ultra-thin white beetle scales. Appl. Opt. 49(22), 4246–4254 (2010)

    Article  ADS  Google Scholar 

  45. S. Doucet, M. Meadows, Iridescence: a functional perspective. J. R. Soc. Interface 6(Suppl 2), S115 (2009)

    Article  Google Scholar 

  46. N. Hadley, A. Savill, T. Schultz, Coloration and its thermal consequences in the New Zealand tiger beetle Neocicindela perhispida. J. Therm. Biol. 17(1), 55–61 (1992)

    Article  Google Scholar 

  47. J. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. Biró, D. Ertz, V. Lousse, Optical structure and function of the white filamentary hair covering the edelweiss bracts. Phys. Rev. E 71(1), 011906 (2005)

    Article  ADS  Google Scholar 

  48. E. Denton, M. Land, Mechanism of reflexion in silvery layers of fish and cephalopods. Proc. R. Soc. Lond. B, Biol. Sci. 178(1050), 43–61 (1971)

    Article  ADS  Google Scholar 

  49. D. McKenzie, Y. Yin, W. McFall, Silvery fish skin as an example of a chaotic reflector. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 451(1943), 579 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Luke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Luke, S., Vukusic, P. (2013). Amorphous Nanophotonics in Nature. In: Rockstuhl, C., Scharf, T. (eds) Amorphous Nanophotonics. Nano-Optics and Nanophotonics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32475-8_10

Download citation

Publish with us

Policies and ethics