Skip to main content

Fluid-Phase Endocytosis in Plant Cells

  • Chapter
  • First Online:
Endocytosis in Plants

Abstract

The uptake of nutrients by plant cells has been traditionally believed to be mediated by membrane-bound carriers. However, the last decade has seen an increase in evidence pointing to the parallel uptake by fluid-phase endocytosis (FPE). Recent advances in plant endocytosis reveal that this is true for heterotrophic cells, whether storage parenchyma, cell suspensions, or nutrient absorbing cells of carnivorous plants. Uptake of extracellular matrix components, endocytic markers, and sugar analogs in a wide variety of heterotrophic cells has confirmed the uptake of extracellular fluids and their transport to the vacuole. Furthermore, there is evidence to indicate the passage through an intracellular compartment where solutes are distributed. The precise nature of FPE has not been revealed; however, evidence using specific inhibitors, CdSe/ZnS quantum dots in combination with other FPE markers and inhibitors such as ikargalukin, points to the clathrin-independent nature of FPE and its possible association with flotillin. That FPE operates in conjunction with membrane-bound transporters in the uptake of solutes is supported by experiments analyzing uptake kinetics of the fluorescent endocytic marker Alexa-488 in the presence of sucrose and membrane-bound transporters and endocytic inhibitors. The mechanisms of membrane remodeling to accommodate the addition of membrane and aqueous volume to the vacuole during FPE remain unresolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adlassnig W, Koller-Peroutka M, Bauer S, Koshkin E, Lendl T, Lichtscheild IK (2012) Endocytoic uptake of nutrients in carnivorous plants. Plant J 71:303–313

    Google Scholar 

  • Ayre B (2011) Membrane-transport systems for sucrose in relation to whole plant carbon partitioning. Mol Plant 4:377–394

    Article  PubMed  CAS  Google Scholar 

  • Balnokin YV, Kurkova EB, Khalilova LA, Myasoedov NA, Yusofov AG (2007) Pinocytosis in rot cells of salt-accumulating halophyte Saudea altissima and its possible involvement in chloride uptake. Russ J Plant Physiol 54:797–805

    Article  CAS  Google Scholar 

  • Baluška F, Hlavačka A, Šamaj J, Palme K, Robinson DR, Matoh DW, McCurdy D, Menzel D, Volkmann D (2002) F-actin-dependent endocytosis of cell wall pectins in meristematic root cells. Insights from brefeldin A-induced compartments. Plant Physiol 130:422–431

    Article  PubMed  Google Scholar 

  • Baluška F, Šamaj J, Hlavačka A, Kendrick-Jones J, Volkmann D (2004) Actin dependent fluid-phase endocytosis in inner cortex cells of maize root apices. J Exp Bot 55:463–473

    Article  PubMed  Google Scholar 

  • Baroja-Fernández E, Etxeberria E, Muñoz FJ, Morán-Zorzano MT, Alonso-Casajús N, González P, Pozueta-Romero J (2006) An important pool of sucrose linked to starch biosynthesis is taken up by endocytosis in heterotrophic cells. Plant Cell Physiol 47:447–456

    Article  PubMed  Google Scholar 

  • Bandmann V, Homann U (2012) Clathrin-independent endocytosis contributes to uptake of glucose into BY-2 protoplast. Plant J 70:578–584

    Google Scholar 

  • Cao H, Chen J, Awoniyi M, Henley JR, McNiven MA (2007) Dynamin 2 mediates fluid-phase micropinocytosis in epithelial cells. J Cell Sci 120:4167–4177

    Article  PubMed  CAS  Google Scholar 

  • Cholewa E, Peterson CA (2001) Detecting exodermal casparian bands in vivo and fluid-phase endocytosis in onion (Allium cepa L.) roots. Can J Bot 79:30–37

    Google Scholar 

  • Diekmann W, Hedrich R, Raschke K, Robinson DG (1993) Osmocytosis and vacuolar fragmentation in guard cell protoplasts: their relevance to osmotically-induced volume changes in guard cells. J Exp Bot 267:1569–1577

    Article  Google Scholar 

  • Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17:520–527

    Article  PubMed  CAS  Google Scholar 

  • Emans N, Zimmermann S, Fischer R (2002) Uptake of a fluorescent marker in plant cells sensitive to brefeldin A and wortmannin. Plant Cell 14:71–86

    Article  PubMed  CAS  Google Scholar 

  • Etxeberria E, Baroja-Fernández E, Muñoz FJ, Pozueta-Romero J (2005a) Sucrose inducible endocytosis as a mechanism for nutrient uptake in heterotrophic plant cells. Plant Cell Physiol 46:474–481

    Article  PubMed  CAS  Google Scholar 

  • Etxeberria E, Gonzalez PC, Tomlinson P, Pozueta J (2005b) Existence of two parallel mechanisms for glucose uptake in heterotrophic plant cells. J Exp Bot 56:1905–1912

    Article  PubMed  CAS  Google Scholar 

  • Etxeberria E, Gonzalez P, Baroja-Fernández E, Pozueta-Romero J (2006) Fluid phase uptake of artificial nano-spheres and fluorescent quantum-dots by sycamore cultured cells. Plant Signaling Behavior 1:196–200

    Article  PubMed  Google Scholar 

  • Etxeberria E, Gonzalez P, Pozueta J (2007a) Mannitol enhanced fluid-phase endocytosis in storage parenchyma cells of celery (Apium graveolens) petioles. Am J Bot 96:1041–1045

    Article  Google Scholar 

  • Etxeberria E, Gonzalez P, Pozueta J (2007b) Fluid phase endocytosis in Citrus juice cells is independent from vacuolar pH and inhibited by chlorpromazine, a PI-3 kinase and clathrin-mediated endocytosis inhibitor. J Hortic Sci Biotechnol 82:900–907

    CAS  Google Scholar 

  • Etxeberria E, Gonzalez P, Pozueta J (2009) Evidence for two endocytic pathways in plant cells. Plant Sci 177:341–348

    Article  CAS  Google Scholar 

  • Gall L, Stan RC, Kress A, Hertel B, Thiel G, Meckel T (2010) Fluorescent detection of GFP allows for the in vivo estimation of endocytic vesicle sizes in plant cells with sub-diffraction accuracy. Traffic 11:548–559

    Article  PubMed  CAS  Google Scholar 

  • Geldner N, Jurgens G (2006) Endocytosis in signaling and development. Curr Opin Plant Biol 9:589–594

    Article  PubMed  CAS  Google Scholar 

  • Gross A, Knapp D, Neihaus K (2005) Endocytosis of xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum. New Phytol 165:215–226

    Article  PubMed  CAS  Google Scholar 

  • Hasumi K, Shinohara S, Nagamura S, Endo A (1992) Inhibition of the uptake of oxidized low-density lipoprotein in macrophage J774 by the antibiotic ikarugamycin. Eur J Biochem 205:841–846

    Article  PubMed  CAS  Google Scholar 

  • Hilmer S, Depta H, Robinson DG (1986) Confirmation of endocytosis in higher plants protoplasts using lectin-gold conjugates. Eur J Cell Biol 41:142–149

    Google Scholar 

  • Holstein SE (2002) Clathrin and plant endocytosis. Traffic 3:614–620

    Article  PubMed  CAS  Google Scholar 

  • Horn MA, Heinstein PF, Low PS (1990) Biotin-mediated delivery of exogenous macromolecules into soybean cells. Plant Physiol 93:1492–1496

    Article  PubMed  CAS  Google Scholar 

  • Hubner R, Depta H, Robinson DG (1985) Endocytosis in maize root cap cells. Evidence obtained using heavy metal salt solutions. Protoplasma 29:214–222

    Article  Google Scholar 

  • Hudák J, Wales B, Vennigerholz F (1993) The transmitting tissue in Bugmansia suaveolens L.: ultrastructure of the stylar transmitting tissue. Ann Bot 71:177–186

    Article  Google Scholar 

  • Jensen WA, McLaren AD (1960) Uptake of proteins by plant cells-the possible occurrence of pinocytosis in plants. Exp Cell Res 19:414–417

    Article  PubMed  CAS  Google Scholar 

  • Joachim S, Robinson DG (1984) Endocytosis of cationic ferritin by bean leaf protoplasts. Eur J Cell Biol 34:212–216

    PubMed  CAS  Google Scholar 

  • Kruth HS, Jones NL, Huang W, Zhao B, Ishii I, Chang J (2005) Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein. J Biol Chem 280:2352–2360

    Article  PubMed  CAS  Google Scholar 

  • Kurkova EB, Balnokin YV (1994) Pinicytosis and its possible role in ion transport in salt accumulating organs of halophytes. Russ J Plant Phys 41:507–511

    Google Scholar 

  • Lam SK, Tse YC, Jiang L, Oliviusson P, Heinzerling O, Robinson DG (2005) Plant prevacuolar compartment and endocytosis. Plant Cell Monogr 1:37–61

    Article  Google Scholar 

  • Lazzaro MD, Thompson WW (1992) Endocytosis of lanthanum nitrate in organic acid-secreting trichomes of chickpea (Cicer arietinum). Amer J Bot 79:1113–1118

    Article  CAS  Google Scholar 

  • Li G, Xue H-W (2007) Arabidopsis PLD-2 regulates vesicle trafficking and is required for auxin response. Plant Cell 19:281–295

    Article  PubMed  CAS  Google Scholar 

  • Li R, Liu P, Wan Y, Chen T, Wang Q, Mettbach U, Baluška F, Šamaj J, Fang X, Lucas WL, Lin J (2012) Membrane microdomain-associated protein, AtFlot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development in Arabidopsis. Plant Cell 24:2105–2122

    Article  PubMed  CAS  Google Scholar 

  • Lin AE-J, Guttman A (2010) Hijacking the endocytic machinery by microbial pathogens. Protoplasma 24:75–90

    Article  Google Scholar 

  • Luo T, Fredericksen BL, Hasumi K, Endo A, Garcia JV (2001) Human immunodeficiency virus type 1 Nef-induced CD4 cell surface down-regulation is inhibited by ikarugamycin. J Virol 75:2488–2492

    Article  PubMed  CAS  Google Scholar 

  • Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev 8:603–612

    Article  CAS  Google Scholar 

  • Moscatelli A, Ciampolini F, Rodighiero S, Onelli E, Cresti M, Santo N, Idilli A (2007) Distinct endocytic pathways identified in tobacco pollen tubes using charged nanogold. J Cell Sci 120:3804–3819

    Article  PubMed  CAS  Google Scholar 

  • Nichols BJ, Lippincott-Schwatz J (2001) Endocytosis without clathrin coats. Trends Cell Biol 11:406–412

    Article  PubMed  CAS  Google Scholar 

  • Neumann D, De Figuereido C (2002) A novel mechanism of silicon uptake. Protoplasma 220:59–67

    Article  PubMed  CAS  Google Scholar 

  • Northcote DH, Davey R, Lay J (1989) Use of antisera to localize callose, xylan and arabinogalactan in cell-plate, primary and secondary walls of plant cells. Planta 178:353–366

    Article  CAS  Google Scholar 

  • Onelli E, Prescianotto-Baschong C, Caccianiga M, Moscatelli A (2008) Clathrin-dependent and independent endocytosis pathways in tobacco protoplasts revealed by labeling with charged nanogold. J Exp Bot 59:3051–3068

    Article  PubMed  CAS  Google Scholar 

  • Oparka KJ, Prior DAM (1988) Movement of lucifer yellow CH in potato tuber storage tissue: a comparison of symplastic and apoplastic transport. Planta 176:533–540

    Article  CAS  Google Scholar 

  • Paramonova NV (1974) Structural bases of interrelationships between the symplast and apoplast in the root of Beta vulgaris during the period of assimilate influx from the leaves. Fiziol Rast 21:578–588

    Google Scholar 

  • Pozueta D, Gonzalez P, Pozueta J, Etxeberria E (2008) The hyperbolic and linear phases of the sucrose accumulation curve in turnip (Brassica campestris) storage cells denote carrier-mediated and fluid-phase endocytic transport, respectively. J Amer Soc Hort Sci 133:612–618

    Google Scholar 

  • Robinson DC, Hinz G, Holstein SHE (1998) The molecular characterization of transport vesicles. Plant Mol Biol 38:49–76

    Article  PubMed  CAS  Google Scholar 

  • Russinova E, Borst JW, Kwaaitaal M, Caño-Delgado A, Yin Y, Chory J, de Vries SC (2004) Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1). Plant Cell 16:3216–3229

    Article  PubMed  CAS  Google Scholar 

  • Šamaj J, Šamajová O, Peters M, Baluška F, Lichtscheidl IK, Knox JP, Volkman D (2002) Immunolocalization of LM2 arabinogalactan-protein epitope associated with endomembranes of plant cells. Protoplasma 212:186–196

    Google Scholar 

  • Šamaj J, Baluška F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004) Endocytosis, actin cytoskeleton, and signaling. Plant Physiol 135:1150–1161

    Article  PubMed  Google Scholar 

  • Šamaj J, Read ND, Volkmann D, Menzel D, Baluška F (2005) The endocytoic network in plants. Trends Cell Biol 5:425–433

    Google Scholar 

  • Samuels AL, Bisalputra T (1990) Endocytosis in elongating root cells of Lobelia erinus. J Cell Sci 97:157–165

    Google Scholar 

  • Sandrig K, Torgersen ML, Raa HA, van Deurs B (2008) Clathrin-independent endocytosis: from non-existing to an extreme degree of complexity. Histochem Cell Biol 129:267–276

    Article  Google Scholar 

  • Tanchak MA, Griffing LR, Mersey BG, Fowke LC (1984) Endocytosis of cationized ferritin by coated vesicles of soybean protoplasts. Planta 162:481–486

    Article  CAS  Google Scholar 

  • Thiel G, Kreft M, Zorec R (1998) Unitary exocytotic and endocytotic events in Zea mays L. coleoptile protoplasts. Plant Journal 13:117–120

    Article  Google Scholar 

  • Villanueva MA, Taylor J, Sui X, Griffing LR (1993) Endocytosis in plant protoplasts. Visualization and quantification of fluid phase endocytosis using silver-enhanced bovine serum albumin-gold. J Exp Bot 44:275–281

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ed Etxeberria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Etxeberria, E., Pozueta-Romero, J., Fernández, E.B. (2012). Fluid-Phase Endocytosis in Plant Cells. In: Šamaj, J. (eds) Endocytosis in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32463-5_5

Download citation

Publish with us

Policies and ethics