Skip to main content

Update on Methods and Techniques to Study Endocytosis in Plants

  • Chapter
  • First Online:

Abstract

The growing interest in the investigation of endocytosis, vesicular transport routes, and corresponding regulatory mechanisms resulted in the exploitation of cell biological, genetic, biochemical, and proteomic approaches. Methods and techniques such as site-directed and T-DNA insertional mutagenesis, RNAi, classical inhibitor treatments, and recombinant GFP technology combined with confocal laser scanning microscopy (CLSM) and electron and immune-electron microscopy were routinely employed for investigation of endocytosis in plant cells. However, new approaches such as high-throughput confocal microscopy screens on mutants and proteomic analyses on isolated vesicular compartments and root cells treated with vesicular trafficking inhibitors (both focused on the identification of new endosomal proteins), together with chemical genomics and advanced microscopy approaches such as Förster resonance energy transfer (FRET), fluorescence recovery after photobleaching (FRAP), light sheet-based fluorescence microscopy, and super-resolution microscopy provided a significant amount of new data and these new methods appear as extremely promising tools in this field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adlassnig W, Koller-Peroutka M, Bauer S, Koshkin E, Lendl T, Lichtscheidl IK (2012) Endocytotic uptake of nutrients in carnivorous plants. Plant J: Cell Mol Biol. doi: 10.1111/j.1365-313X.2012.04997.x

  • Agrawal GK, Bourguignon J, Rolland N et al (2010) Plant organelle proteomics: collaborating for optimal cell function. Mass Spectrom Rev. doi:10.1002/mas.20301

    PubMed  Google Scholar 

  • Baluška F, Šamaj J, Hlavačka A, Kendrick-Jones J, Volkmann D (2004) Actin-dependent fluid-phase endocytosis in inner cortex cells of maize root apices. J Exp Bot 55:463–473

    PubMed  Google Scholar 

  • Banbury DN, Oakley JD, Sessions RB, Banting G (2003) Tyrphostin A23 inhibits internalization of the transferrin receptor by perturbing the interaction between tyrosine motifs and the medium chain subunit of the AP-2 adaptor complex. J Biol Chem 278:12022–12028

    PubMed  CAS  Google Scholar 

  • Bandmann V, Kreft M, Homann U (2011) Modes of exocytotic and endocytotic events in tobacco BY-2 protoplasts. Mol Plant 4:241–251

    PubMed  CAS  Google Scholar 

  • Bandmann V, Homann U (2012) Clathrin-independent endocytosis contributes to uptake of glucose into BY-2 protoplasts. Plant J 70:578–584. doi:10.1111/j.1365-313X.2011.04892.x

    PubMed  CAS  Google Scholar 

  • Bar M, Aharon M, Benjamin S, Rotblat B, Horowitz M, Avni A (2008) AtEHDs, novel Arabidopsis EH-domain-containing proteins involved in endocytosis. Plant J 55:1025–1038

    PubMed  CAS  Google Scholar 

  • Bar M, Avni A (2009) EHD2 inhibits ligand-induced endocytosis and signaling of the leucine-rich repeat receptor-like protein LeEix2. Plant J 59:600–611

    PubMed  CAS  Google Scholar 

  • Bar M, Sharfman M, Schuster S, Avni A (2009) The Coiled-coil domain of EHD2 mediates inhibition of LeEix2 endocytosis and signaling. PLoS One 4(11):e7973. doi:10.1371/journal.pone.0007973

    PubMed  Google Scholar 

  • Baroja-Fernandez E, Etxeberria E, Muñoz FJ, Morán-Zorzano MT, Alonso-Casajús N, Gonzalez P, Pozueta-Romero J (2006) An important pool of sucrose linked to starch biosynthesis is taken up by endocytosis in heterotrophic cells. Plant Cell Physiol 47:447–456

    PubMed  CAS  Google Scholar 

  • Bassil E, Ohto MA, Esumi T, Tajima H, Zhu Z, Cagnac O, Belmonte M, Peleg Z, Yamaguchi T, Blumwald E (2011) The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. Plant Cell 23:224–239

    PubMed  CAS  Google Scholar 

  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    PubMed  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    PubMed  CAS  Google Scholar 

  • Böhlenius H, Mørch SM, Godfrey D, Nielsen ME, Thordal-Christensen H (2010) The multivesicular body-localized GTPase ARFA1b/1c is important for callose deposition and ROR2 syntaxin-dependent preinvasive basal defense in barley. Plant Cell 22:3831–3844

    PubMed  Google Scholar 

  • Borner GHH, Sherrier DJ, Weimar T et al (2005) Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol 137:104–116

    PubMed  CAS  Google Scholar 

  • Boutté Y, Men S, Grebe M (2011) Fluorescent in situ visualization of sterols in Arabidopsis roots. Nat Protocols 6(4):446–456

    Google Scholar 

  • Brüx A, Liu TY, Krebs M, Stierhof YD, Lohmann JU, Miersch O, Wasternack C, Schumacher K (2008) Reduced V-ATPase activity in the trans-golgi network causes oxylipin-dependent hypocotyl growth inhibition in Arabidopsis. Plant Cell 20:1088–1100

    PubMed  Google Scholar 

  • Cai Y, Zhuang X, Wang J, Wang H, Lam SK, Gao C, Wang X, Jiang L (2012) Vacuolar degradation of two integral plasma membrane proteins, AtLRR84A and OsSCAMP1, is cargo ubiquitination-independent and prevacuolar compartment-mediated in plant cells. Traffic 13:1023–1040. doi:10.1111/j.1600-0854.2012.01360.x

    PubMed  CAS  Google Scholar 

  • Carmona-Salazar L, El Hafidi M, Enríquez-Arredondo C et al (2011) Isolation of detergent-resistant membranes from plant photosynthetic and non-photosynthetic tissues. Anal Biochem 417:220–227

    PubMed  CAS  Google Scholar 

  • Chen X, Irani NG, Friml J (2011) Clathrin-mediated endocytosis: the gateway into plant cells. Curr Opin Plant Biol 14:674–682

    PubMed  CAS  Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JD, Felix G, Boller T (2007) Aflagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500

    PubMed  CAS  Google Scholar 

  • Chow CM, Neto H, Foucart C, Moore I (2008) Rab-A2 and Rab-A3 GTPases define a trans-golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell 20:101–123

    PubMed  CAS  Google Scholar 

  • Dettmer J, Hong-Hermesdorf A, Stierhof Y-D, Schumacher K (2006) Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18:715–730

    PubMed  CAS  Google Scholar 

  • Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902

    PubMed  CAS  Google Scholar 

  • Dhonukshe P, Baluška F, Schlicht M, Hlavačka A, Šamaj J, Friml J, Gadella TW Jr (2006) Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev Cell 10:137–150

    PubMed  CAS  Google Scholar 

  • Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17:520–527

    PubMed  CAS  Google Scholar 

  • Dhonukshe P, Tanaka H, Goh T, Ebine K, Mähönen AP, Prasad K, Blilou I, Geldner N, Xu J, Uemura T, Chory J, Ueda T, Nakano A, Scheres B, Friml J (2008) Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature 456:962–966

    PubMed  CAS  Google Scholar 

  • Donohoe BS, Mogelsvang S, Staehelin LA (2006) Electron tomography of ER, Golgi and related membrane systems. Methods 39:154–162

    PubMed  CAS  Google Scholar 

  • Drakakaki G, Robert S, Szatmari AM, Brown MQ, Nagawa S, Van Damme D, Leonard M, Yang Z, Girke T, Schmid SL, Russinova E, Friml J, Raikhel NV, Hicks GR (2011) Clusters of bioactive compounds target dynamic endomembrane networks in vivo. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1108581108

    PubMed  Google Scholar 

  • Drakakaki G, van de Ven W, Pan S, Miao Y, Wang J, Keinath NF, Weatherly B, Jiang L, Schumacher K, Hicks G, Raikhel N (2012) Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in Arabidopsis. Cell Res 22:413–424. doi:10.1038/cr.2011.129

    PubMed  CAS  Google Scholar 

  • Drake MT, Zhu Y, Kornfeld S (2000) The assembly of AP-3 adaptorcomplex-containing clathrin-coated vesicles on synthetic liposomes. Mol Biol Cell 11:3723–3736

    PubMed  CAS  Google Scholar 

  • Dunkley TPJ, Hester S, Shadforth IP et al (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci U S A 103:6518–6523

    PubMed  CAS  Google Scholar 

  • Ebine K, Okatani Y, Uemura T, Goh T, Shoda K, Niihama M, Morita MT, Spitzer C, Otegui MS, Nakano A, Ueda T (2008) A SNARE complex unique to seed plants is required for protein storage vacuole biogenesis and seed development of Arabidopsis thaliana. Plant Cell 20:3006–3021

    PubMed  CAS  Google Scholar 

  • Ebine K, Fujimoto M, Okatani Y, Nishiyama T, Goh T, Ito E, Dainobu T, Nishitani A, Uemura T, Sato MH, Thordal-Christensen H, Tsutsumi N, Nakano A, Ueda T (2011) A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat Cell Biol 13:853–859

    PubMed  CAS  Google Scholar 

  • Etxeberria E, Baroja-Fernandez E, Muñoz FJ, Pozueta-Romero J (2005) Sucrose-inducible endocytosis as a mechanism for nutrient uptake in heterotrophic plant cells. Plant Cell Physiol 46:474–481

    PubMed  CAS  Google Scholar 

  • Etxeberria E, Gonzalez P, Pozueta J (2009) Evidence for two endocytic pathways in plant cells. Plant Sci 177:341–348

    CAS  Google Scholar 

  • Feraru E, Paciorek T, Feraru MI, Zwiewka M, De Groodt R, De Rycke R, Kleine-Vehn J, Friml J (2010) The AP-3 β adaptin mediates the biogenesis and function of the lytic vacuoles in Arabidopsis. Plant Cell 22:2812–2824

    PubMed  CAS  Google Scholar 

  • Foresti O, Gershlick DC, Bottanelli F, Hummel E, Hawes C, Denecke J (2010) A recycling-defective vacuolar sorting receptor reveals an intermediate compartment situated between prevacuoles and vacuoles in tobacco. Plant Cell 22:3992–4008

    PubMed  CAS  Google Scholar 

  • Friml J, Wisniewska J, Benková E, Mendgen K, Palme K (2002a) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    PubMed  Google Scholar 

  • Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G, Palme K (2002b) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–673

    PubMed  CAS  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153

    PubMed  CAS  Google Scholar 

  • Furutani M, Sakamoto N, Yoshida S, Kajiwara T, Robert HS, Friml J, Tasaka M (2011) Polar-localized NPH3-like proteins regulate polarity and endocytosis of PIN-FORMED auxin efflux carriers. Development 138:2069–2078

    PubMed  CAS  Google Scholar 

  • Gaullier JM, Simonsen A, D’Arrigo A, Bremnes B, Stenmark H, Aasland R (1998) FYVE fingers bind PtdIns(3)P. Nature 394:432–433

    PubMed  CAS  Google Scholar 

  • Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230

    PubMed  Google Scholar 

  • Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

    PubMed  CAS  Google Scholar 

  • Geldner N, Hyman DL, Wang X, Schumacher K, Chory J (2007) Endosomal signaling of plant steroid receptor kinase BRI1. Genes Dev 21:1598–1602

    PubMed  CAS  Google Scholar 

  • Geldner N, Dénervaud-Tendon V, Hyman DL, Mayer U, Stierhof YD, Chory J (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J 59:169–178

    PubMed  CAS  Google Scholar 

  • van Gisbergen P, Esseling-Ozdoba A, Vos J (2008) Microinjecting FM4-64 validates it as a marker of the endocytic pathway in plants. J Microsc 231:284–290

    PubMed  Google Scholar 

  • Grebe M, Xu J, Möbius W, Ueda T, Nakano A, Geuze HJ, Rook MB, Scheres B (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 13:1378–1387

    PubMed  CAS  Google Scholar 

  • Griffing LR (2008) FRET analysis of transmembrane flipping of FM4-64 in plant cells: is FM4-64 a robust marker for endocytosis? J Microsc 231:291–298

    PubMed  CAS  Google Scholar 

  • Haas TJ, Sliwinski MK, Martínez DE, Preuss M, Ebine K, Ueda T, Nielsen E, Odorizzi G, Otegui MS (2007) The Arabidopsis AAA ATPase SKD1 is involved in multivesicular endosome function and interacts with its positive regulator LYST-interacting protein 5. Plant Cell 19:1295–1312

    PubMed  CAS  Google Scholar 

  • Hause G, Šamaj J, Menzel D, Baluška F (2006) Fine structural analysis of brefeldin a-induced compartment formation after high-pressure freeze fixation of maize root epidermis: compound exocytosis resembling cell plate formation during cytokinesis. Plant Signal Behav 1:134–139

    PubMed  CAS  Google Scholar 

  • Hejátko J, Blilou I, Brewer PB, Friml J, Scheres B, Benková E (2006) In situ hybridization technique for mRNA detection in whole mount Arabidopsis samples. Nat Protoc 1:1939–1946

    PubMed  Google Scholar 

  • Herberth S, Shahriari M, Bruderek M et al (2012) Artificial ubiquitylation is sufficient for sorting of a plasma membrane ATPase to the vacuolar lumen of Arabidopsis cells. Planta. doi:10.1007/s00425-012-1587-0

    PubMed  Google Scholar 

  • Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EH (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–1009

    PubMed  CAS  Google Scholar 

  • Irani NG, Di Rubbo S, Mylle E, Van den Begin J, Schneider-Pizoń J, Hniliková J, Síša M, Buyst D, Vilarrasa-Blasi J, Szatmári AM, Van Damme D, Mishev K, Codreanu MC, Kohout L, Strnad M, Caño-Delgado AI, Friml J, Madder A, Russinova E (2012) Fluorescent castasterone reveals BRI1 signaling from the plasma membrane. Nat Chem Biol 8:583–589. doi:10.1038/nchembio.958

    PubMed  CAS  Google Scholar 

  • Ito E, Fujimoto M, Ebine K, Uemura T, Ueda T, Nakano A (2012) Dynamic behavior of clathrin in Arabidopsis thaliana unveiled by live imaging. Plant J 69:204–216. doi:10.1111/j.1365-313X.2011.04782.x

    PubMed  CAS  Google Scholar 

  • Jaillais Y, Fobis-Loisy I, Miege C, Rollin C, Gaude T (2006) AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature 443:106–109

    PubMed  CAS  Google Scholar 

  • Jaillais Y, Santambrogio M, Rozier F et al (2007) The retromer protein VPS29 links cell polarity and organ initiation in plants. Cell 130:1057–1070

    PubMed  CAS  Google Scholar 

  • Jaillais Y, Fobis-Loisy I, Miège C, Gaude T (2008) Evidence for a sorting endosome in Arabidopsis root cells. Plant J 53:237–247

    PubMed  CAS  Google Scholar 

  • Jelínková A, Malínská K, Simon S, Kleine-Vehn J, Parezová M, Pejchar P, Kubes M, Martinec J, Friml J, Zazímalová E, Petrásek J (2010) Probing plant membranes with FM dyes: tracking, dragging or blocking? Plant J 61:883–892

    PubMed  Google Scholar 

  • Kale SD, Gu B, Capelluto DG, Dou D, Feldman E, Rumore A, Arredondo FD, Hanlon R, Fudal I, Rouxel T, Lawrence CB, Shan W, Tyler BM (2010) External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell 142:284–295

    PubMed  CAS  Google Scholar 

  • Kang B-H, Staehelin LA (2008) ER-to-Golgi transport by COPII vesicles in Arabidopsis involves a ribosome-excluding scaffold that is transferred with the vesicles to the Golgi matrix. Protoplasma 234:51–64

    PubMed  CAS  Google Scholar 

  • Kang BH, Nielsen E, Preuss ML, Mastronarde D, Staehelin LA (2011) Electron tomography of RabA4b- and PI-4 Kβ1-labeled trans Golgi network compartments in Arabidopsis. Traffic 12:313–329

    PubMed  CAS  Google Scholar 

  • Keller PJ, Stelzer HK (2008) Quantitative in vivo imaging of entire embryos with digital scanned laser light sheet fluorescence microscopy. Curr Opin Neurobiol 18:624–632

    PubMed  CAS  Google Scholar 

  • Kitakura S, Vanneste S, Robert S, Löfke C, Teichmann T, Tanaka H, Friml J (2011) Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. Plant Cell 23:1920–1931

    PubMed  CAS  Google Scholar 

  • Kleine-Vehn J, DhonuksheP Swarup R, Bennett M, Friml J (2006) Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1. Plant Cell 18:3171–3181

    PubMed  CAS  Google Scholar 

  • Kleine-Vehn J, Dhonukshe P, Sauer M, Brewer PB, Wiśniewska J, Paciorek T, Benková E, Friml J (2008) ARF GEF-dependent transcytosis and polar delivery of PIN auxin carriers in Arabidopsis. Curr Biol 18:526–531

    PubMed  CAS  Google Scholar 

  • Kleine-Vehn J, Huang F, Naramoto S, Zhang J, Michniewicz M, Offringa R, Friml J (2009) PIN auxin efflux carrier polarity is regulated by PINOID kinase-mediated recruitment into GNOM-independent trafficking in Arabidopsis. Plant Cell 21:3839–3849

    PubMed  CAS  Google Scholar 

  • Kleine-Vehn J, Ding Z, Jones AR, Tasaka M, Morita MT, Friml J (2010) Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proc Natl Acad Sci U S A 107:22344–22349

    PubMed  CAS  Google Scholar 

  • Kleine-Vehn J, Wabnik K, Martinière A, Łangowski Ł, Willig K, Naramoto S, Leitner J, Tanaka H, Jakobs S, Robert S, Luschnig C, Govaerts W, Hell SW, Runions J, Friml J (2011) Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane. Mol Syst Biol 7:540. doi:10.1038/msb.2011.72

    PubMed  CAS  Google Scholar 

  • Konopka CA, Bednarek SY (2008a) Comparison of the dynamics and functional redundancy of the Arabidopsis dynamin-related isoforms DRP1A and DRP1C during plant development. Plant Physiol 147:1590–1602

    PubMed  CAS  Google Scholar 

  • Konopka CA, Bednarek SY (2008b) Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex. Plant J 53:186–196

    PubMed  CAS  Google Scholar 

  • Konopka CA, Backues SK, Bednarek SY (2008) Dynamics of Arabidopsis dynamin-related protein 1C and a clathrin light chain at the plasma membrane. Plant Cell 20:1363–1380

    PubMed  CAS  Google Scholar 

  • Lam SK, Siu CL, Hillmer S, Jang S, An G, Robinson DG, Jiang L (2007) Rice SCAMP1 defines clathrin-coated, trans-Golgi-located tubular-vesicular structures as an early endosome in tobacco BY-2 cells. Plant Cell 19:296–319

    PubMed  CAS  Google Scholar 

  • Lam SK, Cai Y, Tse YC, Wang J, Law AH, Pimpl P, Chan HY, Xia J, Jiang L (2009) BFA-induced compartments from the Golgi apparatus and trans-Golgi network/early endosome are distinct in plant cells. Plant J 60:865–881

    PubMed  CAS  Google Scholar 

  • Laloi M, Perret AM, Chatre L, Melser S, Cantrel C, Vaultier MN, Zachowski A, Bathany K, Schmitter JM, Vallet M, Lessire R, Hartmann MA, Moreau P (2007) Insights into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells. Plant Physiol 143:461–472

    PubMed  CAS  Google Scholar 

  • Lee Y, Bak G, Choi Y, Chuang WI, Cho HT, Lee Y (2008a) Roles of phosphatidylinositol 3-kinase in root hair growth. Plant Physiol 147:624–635

    PubMed  CAS  Google Scholar 

  • Lee YJ, Szumlanski A, Nielsen E, Yang Z (2008b) Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. J Cell Biol 181:1155–1168

    PubMed  CAS  Google Scholar 

  • Lefebvre B, Furt F, Hartmann MA, Michaelson LV, Carde JP, Sargueil-Boiron F, Rossignol M, Napier JA, Cullimore J, Bessoule JJ, Mongrand S (2007) Characterization of lipid rafts from Medicago truncatula root plasma membranes: a proteomic study reveals the presence of a raft-associated redox system. Plant Physiol 144:402–418

    PubMed  CAS  Google Scholar 

  • Li X, Wang X, Yang Y, Li R, He Q, Fang X, Luu DT, Maurel C, Lin J (2011) Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell 23:3780–3797

    PubMed  CAS  Google Scholar 

  • Li R, Liu P, Wan Y, Chen T, Wang Q, Mettbach U, Baluška F, Šamaj J, Fang X, Lucas WJ, Lin J (2012) A membrane microdomain-associated protein, Arabidopsis flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. Plant Cell 24:2105–2122. doi:10.1105/tpc.112.095695

    PubMed  CAS  Google Scholar 

  • Lilley KS, Dupree P (2007) Plant organelle proteomics. Curr Opin Plant Biol 10:594–599

    PubMed  CAS  Google Scholar 

  • Limbach C, Staehelin LA, Sievers A, Braun M (2008) Electron tomographic characterization of a vacuolar reticulum and of six vesicle types that occupy different cytoplasmic domains in the apex of tip-growing chara rhizoids. Planta 227:1101–1114

    PubMed  CAS  Google Scholar 

  • Lindek S, Cremer C, Stelzer EH (1996a) Confocal theta fluorescence microscopy using two-photon absorption and annular apertures. Optik 102:131–134

    CAS  Google Scholar 

  • Lindek S, Cremer C, Stelzer EH (1996b) Confocal theta fluorescence microscopy with annular apertures. Appl Opt 35:126–130

    PubMed  CAS  Google Scholar 

  • Lindek S, Stelzer EH (1996) Optical transfer functions for confocal theta fluorescence microscopy. J Opt Soc Am A 13:479–482

    Google Scholar 

  • Liu P, Li RL, Zhang L, Wang QL, Niehaus K, Baluška F, Šamaj J, Lin J (2009) Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth. Plant J 60:303–313

    PubMed  CAS  Google Scholar 

  • Luczak M, Bugajewska A, Wojtaszek P (2008) Inhibitors of protein glycosylation or secretion change the pattern of extracellular proteins in suspension-cultured cells of Arabidopsis thaliana. Plant Physiol Biochem 46:962–969

    PubMed  CAS  Google Scholar 

  • Luu DT, Martinière A, Sorieul M, Runions J, Maurel C (2012) Fluorescence recovery after photobleaching reveals high cycling dynamics of plasma membrane aquaporins in Arabidopsis roots under salt stress. Plant J 69:894–905

    PubMed  CAS  Google Scholar 

  • Maizel A, von Wangenheim D, Federici F, Haseloff J, Stelzer EH (2011) High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant J 68:377–385

    PubMed  CAS  Google Scholar 

  • Matheson LA, Hanton SL, Rossi M, Latijnhouwers M, Stefano G, Renna L, Brandizzi F (2007) Multiple roles of ADP-ribosylation factor 1 in plant cells include spatially regulated recruitment of coatomer and elements of the Golgi matrix. Plant Physiol 143:1615–1627

    PubMed  CAS  Google Scholar 

  • Matsuoka K, Bassham DC, Raikhel NV, Nakamura K (1995) Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J Cell Biol 130:1307–1318

    PubMed  CAS  Google Scholar 

  • Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–612

    PubMed  CAS  Google Scholar 

  • Miao Y, Yan PK, Kim H, Hwang I, Jiang L (2006) Localization of green fluorescent protein fusions with the seven Arabidopsis vacuolar sorting receptors to prevacuolar compartments in tobacco BY-2 cells. Plant Physiol 142:945–962

    PubMed  CAS  Google Scholar 

  • Miao Y, Li KY, Li HY, Yao X, Jiang L (2008) The vacuolar transport of aleurain-GFP and 2S albumin-GFP fusions is mediated by the same prevacuolar compartments in tobacco BY-2 and Arabidopsis suspension cultured cells. Plant J 56:824–839

    PubMed  CAS  Google Scholar 

  • Miyazawa Y, Ito Y, Moriwaki T, Kobayashi A, Fujii N, Takahashi T (2009) A molecular mechanism unique to hydrotropism in roots. Plant Sci 177:297–301

    CAS  Google Scholar 

  • Mongrand S, Morel J, Laroche J, Claverol S, Carde JP, Hartmann MA, Bonneu M, Simon-Plas F, Lessire R, Bessoule JJ (2004) Lipid rafts in higher plant cells: purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane. J Biol Chem 279:36277–36286

    PubMed  CAS  Google Scholar 

  • Morel J, Claverol S, Mongrand S, Furt F, Fromentin J, Bessoule JJ, Blein JP, Simon-Plas F (2006) Proteomics of plant detergent-resistant membranes. Mol Cell Proteomics 5:1396–1411

    PubMed  CAS  Google Scholar 

  • Mravec J, Petrášek J, Li N, Boeren S, Karlova R, Kitakura S, Pařezová M, Naramoto S, Nodzyński T, Dhonukshe P, Bednarek SY, Zažímalová E, de Vries S, Friml J (2011) Cell plate restricted association of DRP1A and PIN proteins is required for cell polarity establishment in Arabidopsis. Curr Biol 21:1055–1060

    PubMed  CAS  Google Scholar 

  • Müller A, Guan C, Gälweiler L, Tänzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17:6903–6911

    PubMed  Google Scholar 

  • Müller J, Mettbach U, Menzel D, Šamaj J (2007) Molecular dissection of endosomal compartments in plants. Plant Physiol 145:293–304

    PubMed  Google Scholar 

  • Müller J, Beck M, Mettbach U, Komis G, Hause G, Menzel D, Šamaj J (2010) Arabidopsis MPK6 is involved in cell division plane control during early root development, and localizes to the pre-prophase band, phragmoplast, trans-Golgi network and plasma membrane. Plant J 61:234–248

    PubMed  Google Scholar 

  • Nagawa S, Xu T, Lin D, Dhonukshe P, Zhang X, Friml J, Scheres B, Fu Y, Yang Z (2012) ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis. PLoS Biol 10:e1001299. doi:10.1371/journal.pbio.1001299

    PubMed  CAS  Google Scholar 

  • Nakano A (2002) Spinning-disk confocal microscopy-a cutting-edge tool for imaging of membrane traffic. Cell Struct Funct 27:349–355

    PubMed  Google Scholar 

  • Naramoto S, Sawa S, Koizumi K, Uemura T, Ueda T, Friml J, Nakano A, Fukuda H (2009) Phosphoinositide-dependent regulation of VAN3 ARF-GAP localization and activity essential for vascular tissue continuity in plants. Development 136:1529–1538

    PubMed  CAS  Google Scholar 

  • Naramoto S, Kleine-Vehn J, Robert S, Fujimoto M, Dainobu T, Paciorek T, Ueda T, Nakano A, Van Montagu MC, Fukuda H, Friml J (2010) ADP-ribosylation factor machinery mediates endocytosis in plant cells. Proc Natl Acad Sci U S A 107:21890–21895

    PubMed  CAS  Google Scholar 

  • Nebenführ A, Ritzenthaler C, Robinson DG (2002) Brefeldin A: deciphering an enigmatic inhibitor of secretion. Plant Physiol 130:1102–1108

    PubMed  Google Scholar 

  • Nielsen E, Cheung AY, Ueda T (2008) The regulatory RAB and ARF GTPases for vesicular trafficking. Plant Physiol 147:1516–1526

    PubMed  CAS  Google Scholar 

  • Niemes S, Labs M, Scheuring D, Krueger F, Langhans M, Jesenofsky B, Robinson DG, Pimpl P (2010) Sorting of plant vacuolar proteins is initiated in the ER. Plant J 62:601–614

    PubMed  CAS  Google Scholar 

  • Noguchi K, Yasumori M, Imai T, Naito S, Matsunaga T, Oda H, Hayashi H, Chino M, Fujiwara T (1997) bor1-1, an Arabidopsis thaliana mutant that requires a high level of boron. Plant Physiol 115:901–906

    PubMed  CAS  Google Scholar 

  • Oliviusson P, Heinzerling O, Hillmer S, Hinz G, Tse YC, Jiang L, Robinson DG (2006) Plant retromer, localized to the prevacuolar compartment and microvesicles in Arabidopsis, may interact with vacuolar sorting receptors. Plant Cell 18:1239–1252

    PubMed  CAS  Google Scholar 

  • Onelli E, Prescianotto-Baschong C, Caccianiga M, Moscatelli A (2008) Clathrin-dependent and independent endocytosis pathways in tobacco protoplasts revealed by labeling with charged nanogold. J Exp Bot 59:3051–3068

    PubMed  CAS  Google Scholar 

  • Osterrieder A, Carvalho CM, Latijnhouwers M, Johansen JN, Stubbs C, Botchway S, Hawes C (2009) Fluorescence lifetime imaging of interactions between Golgi tethering factors and small GTPases in plants. Traffic 10:1034–1046

    PubMed  CAS  Google Scholar 

  • Otegui MS, Herder R, Schulze J, Jung R, Staehelin LA (2006) The proteolytic processing of seed storage proteins in Arabidopsis embryo cells starts in the multivesicular bodies. Plant Cell 18:2567–2581

    PubMed  CAS  Google Scholar 

  • Ovečka M, Lang I, Baluška F, Ismail A, Illeš P, Lichtscheidl IK (2005) Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226:39–54

    PubMed  Google Scholar 

  • Ovečka M, Berson T, Beck M, Derksen J, Šamaj J, Baluška F, Lichtscheidl IK (2010) Structural sterols are involved in both the initiation and tip growth of root hairs in Arabidopsis thaliana. Plant Cell 22:2999–3019

    PubMed  Google Scholar 

  • Paciorek T, Zažímalová E, Ruthardt N, Petrášek J, Stierhof YD, Kleine-Vehn J, Morris DA, Emans N, Jürgens G, Geldner N, Friml J (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435:1251–1256

    PubMed  CAS  Google Scholar 

  • Padilla-Parra S, Tramier M (2012) FRET microscopy in the living cell: different approaches, strengths and weaknesses. BioEssays 34:369–376. doi:10.1002/bies.201100086

    PubMed  Google Scholar 

  • Phan NQ, Kim SJ, Bassham DC (2008) Overexpression of Arabidopsis sorting nexin AtSNX2b inhibits endocytic trafficking to the vacuole. Mol Plant 1:961–976

    PubMed  CAS  Google Scholar 

  • Petrášek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertová D, Wisniewska J, Tadele Z, Kubes M, Covanová M, Dhonukshe P, Skupa P, Benková E, Perry L, Krecek P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zažímalová E, Friml J (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–918

    PubMed  Google Scholar 

  • Pinheiro H, Samalova M, Geldner N, Chory J, Martinez A, Moore I (2009) Genetic evidence that the higher plant Rab-D1 and Rab-D2 GTPases exhibit distinct but overlapping interactions in the early secretory pathway. J Cell Sci 122:3749–3758

    PubMed  CAS  Google Scholar 

  • Pourcher M, Santambrogio M, Thazar N, Thierry AM, Fobis-Loisy I, Miège C, Jaillais Y, Gaude T (2010) Analyses of SORTING NEXINs reveal distinct retromer-subcomplex functions in development and protein sorting in Arabidopsis thaliana. Plant Cell 22:3980–3991

    PubMed  CAS  Google Scholar 

  • Preuss ML, Serna J, Falbel TG, Bednarek SY, Nielsen E (2004) The Arabidopsis Rab GTPase RabA4b localizes to the tips of growing root hair cells. Plant Cell 16:1589–1603

    PubMed  CAS  Google Scholar 

  • Preuss ML, Schmitz AJ, Thole JM, Bonner HK, Otegui MS, Nielsen E (2006) A role for the RabA4b effector protein PI-4Kbeta1 in polarized expansion of root hair cells in Arabidopsis thaliana. J Cell Biol 172:991–998

    PubMed  CAS  Google Scholar 

  • Reichardt I, Stierhof YD, Mayer U, Richter S, Schwarz H, Schumacher K, Jürgens G (2007) Plant cytokinesis requires de novo secretory trafficking but not endocytosis. Curr Biol 17:2047–2053

    PubMed  CAS  Google Scholar 

  • Reyes FC, Buono R, Otegui MS (2011) Plant endosomal trafficking pathways. Curr Opin Plant Biol 14:666–673

    PubMed  CAS  Google Scholar 

  • Richardson LGL, Howard ASM, Khuu N, Gidda SK, McCartney A, Morphy BJ, Mullen RT (2011) Protein–protein interaction network and subcellular localization of the Arabidopsis thaliana ESCRT machinery. Front. Plant Sci. 2:20

    PubMed  Google Scholar 

  • Richter S, Müller LM, Stierhof YD, Mayer U, Takada N, Kost B, Vieten A, Geldner N, Koncz C, Jürgens G (2011) Polarized cell growth in Arabidopsis requires endosomal recycling mediated by GBF1-related ARF exchange factors. Nat Cell Biol 4:80–86

    Google Scholar 

  • Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20:537–542

    PubMed  CAS  Google Scholar 

  • Robert S, Chary SN, Drakakaki G, Li S, Yang Z, Raikhel NV, Hicks GR (2008) Endosidin1 defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1. Proc Natl Acad Sci U S A 105:8464–8469

    PubMed  CAS  Google Scholar 

  • Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T, Baster P, Vanneste S, Zhang J, Simon S, Čovanová M, Hayashi K, Dhonukshe P, Yang Z, Bednarek SY, Jones AM, Luschnig C, Aniento F, Zažímalová E, Friml J (2010) ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143:111–121

    PubMed  CAS  Google Scholar 

  • Russinova E, Borst JW, Kwaaitaal M, Yanhai Yin Y, Caño-Delgado A, Chory J, de Vries SC (2004) Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1). Plant Cell 16:3216–3229

    PubMed  CAS  Google Scholar 

  • Salomon S, Grunewald D, Stüber K, Schaaf S, MacLean D, Schulze-Lefert P, Robatzek S (2010) High-throughput confocal imaging of intact live tissue enables quantification of membrane trafficking in Arabidopsis. Plant Physiol 154:1096–1104

    PubMed  CAS  Google Scholar 

  • Sätzler K, Eils R (1997) Resolution improvement by 3-D reconstructions from tilted views in axial tomography and confocal theta microscopy. Bioimaging 5:171–182

    Google Scholar 

  • Šamaj J, Baluška F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004) Endocytosis, actin cytoskeleton, and signaling. Plant Physiol 135:1150–1161

    PubMed  Google Scholar 

  • Scheuring D, Viotti C, Krüger F, Künzl F, Sturm S, Bubeck J, Hillmer S, Frigerio L, Robinson DG, Pimpl P, Schumacher K (2011) Multivesicular bodies mature from the trans-Golgi network/early endosome in Arabidopsis. Plant Cell 23:3463–3481

    PubMed  CAS  Google Scholar 

  • Sena G, Frentz Z, Birnbaum KD, Leibler S (2011) Quantitation of cellular dynamics in growing Arabidopsis roots with light sheet microscopy. PLoS One 6(6):e21303. doi:10.1371/journal.pone.0021303

    PubMed  CAS  Google Scholar 

  • Silady RA, Ehrhardt DW, Jackson K, Faulkner C, Oparka K, Somerville CR (2007) The GRV2/RME-8 protein of Arabidopsis functions in the late endocytic pathway and is required for vacuolar membrane flow. Plant J 53:29–41

    PubMed  Google Scholar 

  • Simon-Plas F, Perraki A, Bayer E, Gerbeau-Pissot P, Mongrand S (2011) An update on plant membrane rafts. Curr Opin Plant Biol 14:642–649

    PubMed  CAS  Google Scholar 

  • Song J, Lee MH, Lee GJ, Yoo CM, Hwang I (2006) Arabidopsis EPSIN1 plays an important role in vacuolar trafficking of soluble cargo proteins in plant cells via interactions with clathrin, AP-1, VTI11, and VSR1. Plant Cell 18:2258–2274

    PubMed  CAS  Google Scholar 

  • Sousa E, Kost B, Malhó R (2008) Arabidopsis phosphatidylinositol-4-monophosphate 5-kinase 4 regulates pollen tube growth and polarity by modulating membrane recycling. Plant Cell 20:3050–3064

    PubMed  CAS  Google Scholar 

  • Sparkes IA, Graumann K, Martinière A, Schoberer J, Wang P, Osterrieder A (2011) Bleach it, switch it, bounce it, pull it: using lasers to reveal plant cell dynamics. J Exp Bot 62:1–7

    PubMed  CAS  Google Scholar 

  • Spitzer C, Schellmann S, Sabovljevic A, Shahriari M, Keshavaiah C, Bechtold N, Herzog M, Müller S, Hanisch FG, Hülskamp M (2006) The Arabidopsis elch mutant reveals functions of an ESCRT component in cytokinesis. Development 133:4679–4689

    PubMed  CAS  Google Scholar 

  • Spitzer C, Reyes FC, Buono R, Sliwinski MK, Haas TJ, Otegui MS (2009) The ESCRT-related CHMP1A and B proteins mediate multivesicular body sorting of auxin carriers in Arabidopsis and are required for plant development. Plant Cell 21:749–766

    PubMed  CAS  Google Scholar 

  • Staehelin LA, Kang BH (2008) Nanoscale architecture of endoplasmic reticulum export sites and of Golgi membranes as determined by electron tomography. Plant Physiol 147:1454–1468

    PubMed  CAS  Google Scholar 

  • Stefano G, Renna L, Rossi M, Azzarello E, Pollastri S, Brandizzi F, Baluska F, Mancuso S (2010) AGD5 is a GTPase-activating protein at the trans-Golgi network. Plant J 64:790–799

    PubMed  CAS  Google Scholar 

  • Stelzer EH, Lindek S (1994) Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy. Opt Commun 111:536–547

    Google Scholar 

  • Swarup R, Kargul J, Marchant A, Zadik D, Rahman A, Mills R, Yemm A, May S, Williams L, Millner P, Tsurumi S, Moore I, Napier R, Kerr ID, Bennett MJ (2004) Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell 16:3069–3083

    PubMed  CAS  Google Scholar 

  • Szechyńska-Hebda M, Wedzony M, Dubas E, Kieft H, van Lammeren A (2006) Visualisation of microtubules and actin filaments in fixed BY-2 suspension cells using an optimised whole mount immunolabelling protocol. Plant Cell Rep 25:758–766

    PubMed  Google Scholar 

  • Szumlanski AL, Nielsen E (2009) The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana. Plant Cell 21:526–544

    PubMed  CAS  Google Scholar 

  • Takáč T, Pechan T, Richter H, Müller J, Eck C, Böhm N, Obert B, Ren H, Niehaus K, Šamaj J (2011a) Proteomics on brefeldin A-treated Arabidopsis roots reveals profilin 2 as a new protein involved in the cross-talk between vesicular trafficking and the actin cytoskeleton. J Proteome Res 10:488–501

    PubMed  Google Scholar 

  • Takáč T, Pechan T, Šamaj J (2011b) Differential proteomics of plant development. J Proteomics 74:577–588

    PubMed  Google Scholar 

  • Takáč T, Pechan T, Šamajová O, Ovečka M, Richter H, Eck C, Niehaus K, Šamaj J (2012) Wortmannin treatment induces changes in Arabidopsis root proteome and post-golgi compartments. J Proteome Res 11:3127–3142. doi:10.1021/pr201111n

    Google Scholar 

  • Takahashi D, Kawamura Y, Yamashita T, Uemura M (2012) Detergent-resistant plasma membrane proteome in oat and rye: similarities and dissimilarities between two monocotyledonous plants. J Proteome Res 11:1654–1665. doi:10.1021/pr200849v

    PubMed  CAS  Google Scholar 

  • Takano J, Tanaka M, Toyoda A, Miwa K, Kasai K, Fuji K, Onouchi H, Naito S, Fujiwara T (2010) Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways. Proc Natl Acad Sci U S A 107:5220–5225

    PubMed  CAS  Google Scholar 

  • Tanaka H, Kitakura S, De Rycke R, De Groodt R, Friml J (2009) Fluorescence imaging-based screen identifies ARF GEF component of early endosomal trafficking. Curr Biol 19:391–397

    PubMed  CAS  Google Scholar 

  • Thellmann M, Rybak K, Thiele K, Wanner G, Assaad FF (2010) Tethering factors required for cytokinesis in Arabidopsis. Plant Physiol 154:720–732

    PubMed  CAS  Google Scholar 

  • Thiel G, Kreft M, Zorec R (2009) Rhythmic kinetics of single fusion and fission in a plant cell protoplast. Ann NY Acad Sci 1152:1–6

    PubMed  CAS  Google Scholar 

  • Tóth R, Gerding-Reimers C, Deeks MJ, Menninger S, Gallegos RM, Tonaco IA, Hübel K, Hussey PJ, Waldmann H, Coupland G (2012) Prieurianin/endosidin1 is an actin stabilizing small molecule identified from a chemical genetic screen for circadian clock effectors in Arabidopsis thaliana. Plant J doi. doi:10.1111/j.1365-313X.2012.04991.x

    Google Scholar 

  • Toyooka K, Goto Y, Asatsuma S, Koizumi M, Mitsui T, Matsuoka K (2009) A mobile secretory vesicle cluster involved in mass transport from the Golgi to the plant cell exterior. Plant Cell 21:1212–1229

    PubMed  CAS  Google Scholar 

  • Tse YC, Mo B, Hillmer S, Zhao M, Lo SW, Robinson DG, Jiang L (2004) Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells. Plant Cell 16:672–693

    PubMed  CAS  Google Scholar 

  • Ueda T, Yamaguchi M, Uchimiya H, Nakano A (2001) Ara6, a plant-unique novel type RabGTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J 20:4730–4741

    PubMed  CAS  Google Scholar 

  • Ueda T, Uemura T, Sato MH, Nakano A (2004) Functional differentiation of endosomes in Arabidopsis cells. Plant J 40:783–789

    PubMed  CAS  Google Scholar 

  • Vermeer JE, van Leeuwen W, Tobeña-Santamaria R, Laxalt AM, Jones DR, Divecha N, Gadella TW Jr, Munnik T (2006) Visualization of PtdIns3P dynamics in living plant cells. Plant J 47:687–700

    PubMed  CAS  Google Scholar 

  • Viotti C, Bubeck J, Stierhof YD, Krebs M, Langhans M, van den Berg W, van Dongen W, Richter S, Geldner N, Takano J, Jürgens G, de Vries SC, Robinson DG, Schumacher K (2010) Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 22:1344–1357

    PubMed  CAS  Google Scholar 

  • Vitha S, Baluška F, Braun M, Šamaj J, Volkmann D, Barlow PW (2000a) Comparison of cryofixation and aldehyde fixation for plant actin immunocytochemistry: aldehydes do not destroy F-actin. Histochem J 32:457–466

    PubMed  CAS  Google Scholar 

  • Vitha S, Baluška F, Jásik J, Volkmann D, Barlow PW (2000b) Steedman‘s wax for F-actin visualization. In: Staiger CJ, Baluška F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer Academic Publishers, Dordrecht, pp 619–636

    Google Scholar 

  • Voie AH, Burns DH, Spelman FA (1993) Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J Microsc 170:229–236

    PubMed  CAS  Google Scholar 

  • Voigt B, Timmers AC, Šamaj J, Hlavačka A, Ueda T, Preuss M, Nielsen E, Mathur J, Emans N, Stenmark H, Nakano A, Baluška F, Menzel D (2005) Actin-based motility of endosomes is linked to the polar tip growth of root hairs. Eur J Cell Biol 84:609–621

    PubMed  CAS  Google Scholar 

  • Wang X, Goshe MB, Soderblom EJ, Phinney BS, Kuchar JA, Li J, Asami T, Yoshida S, Huber SC, Clouse SD (2005) Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1 receptor kinase. Plant Cell 17:1685–1703

    PubMed  CAS  Google Scholar 

  • Wang J, Li Y, Lo SW, Hillmer S, Sun SS, Robinson DG, Jiang L (2007) Protein mobilization in germinating mung bean seeds involves vacuolar sorting receptors and multivesicular bodies. Plant Physiol 143:1628–1639

    PubMed  CAS  Google Scholar 

  • Wang J, Cai Y, Miao Y, Lam SK, Jiang L (2009) Wortmannin induces homotypic fusion of plant prevacuolar compartments. J Exp Bot 60:3075–3083

    PubMed  CAS  Google Scholar 

  • Wang H, Tse YC, Law AH, Sun SS, Sun YB, Xu ZF, Hillmer S, Robinson DG, Jiang L (2010) Vacuolar sorting receptors (VSRs) and secretory carrier membrane proteins (SCAMPs) are essential for pollen tube growth. Plant J 61:826–838

    PubMed  CAS  Google Scholar 

  • Weckwerth W (2011) Green systems biology-from single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteomics 75:284–305

    PubMed  CAS  Google Scholar 

  • Wisniewska J, Xu J, Seifertová D, Brewer PB, Ruzicka K, Blilou I, Rouquié D, Benková E, Scheres B, Friml J (2006) Polar PIN localization directs auxin flow in plants. Science 312:883

    PubMed  CAS  Google Scholar 

  • Wolfenstetter S, Wirsching P, Dotzauer D, Schneider S, Sauer N (2012) Routes to the tonoplast: the sorting of tonoplast transporters in Arabidopsis mesophyll protoplasts. Plant Cell 24:215–232

    PubMed  CAS  Google Scholar 

  • Xu J, Scheres B (2005) Cell polarity: ROPing the ends together. Curr Opin Plant Biol 8:613–618

    PubMed  CAS  Google Scholar 

  • Yang Y, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E (2006) High-affinity auxin transport by the AUX1 influxcarrier protein. Curr Biol 16:1123–1127

    PubMed  CAS  Google Scholar 

  • Yoshinari A, Kasai K, Fujiwara T, Naito S, Takano J (2012) Polar localization and endocytic degradation of a boron transporter, BOR1, is dependent on specific tyrosine residues. Plant Signal Behav 7:46–49

    PubMed  CAS  Google Scholar 

  • Zhang L, Zhang H, Liu P, Hao H, Jin JB, Lin J (2011) Arabidopsis R-SNARE proteins VAMP721 and VAMP722 are required for cell plate formation. PLoS One 6(10):e26129. doi:10.1371/journal.pone.0026129

    PubMed  CAS  Google Scholar 

  • Zonia L, Munnik T (2008) Vesicle trafficking dynamics and visualization of zones of exocytosis and endocytosis in tobacco pollen tubes. J Exp Bot 59:861–873

    PubMed  CAS  Google Scholar 

  • Zouhar J, Rojo E, Bassham DC (2009) AtVPS45 is a positive regulator of the SYP41/SYP61/VTI12 SNARE complex involved in trafficking of vacuolar cargo. Plant Physiol 149:1668–1678

    PubMed  CAS  Google Scholar 

  • Zwiewka M, Feraru E, Möller B, Hwang I, Feraru MI, Kleine-Vehn J, Weijers D, Friml J (2011) The AP-3 adaptor complex is required for vacuolar function in Arabidopsis. Cell Res 21:1711–1722

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank George Komis for critical reading of the manuscript. This work was supported by structural research grants from EU and the Czech Republic to the Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic (grant No. ED0007/01/01) and by grant No. P501/11/1764 from the Czech Science Foundation (GAČR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Šamaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Šamajová, O., Takáč, T., von Wangenheim, D., Stelzer, E., Šamaj, J. (2012). Update on Methods and Techniques to Study Endocytosis in Plants. In: Šamaj, J. (eds) Endocytosis in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32463-5_1

Download citation

Publish with us

Policies and ethics