Skip to main content

Massive Computation for Femtosecond Dynamics in Condensed Matters

  • Conference paper
  • First Online:
  • 586 Accesses

Abstract

In this report, numerical simulation on non-thermal dynamics in condensed matters conducted by femtosecond laser shot is presented. Electron–ion dynamics was treated within the framework of the time-dependent density functional theory for electrons coupled with classical molecular dynamics for ions. The formalisms and application of this simulation to photo-exfoliation of graphene from graphite surface and photo-disintegration of molecules inside a carbon nanotube are presented. Heavy tasks for memory access in this simulation scheme will also be mentioned.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The result of shorter pulse with FWHM = 10 fs was revisited; the numerical data obtained in our former calculations [18] was carefully re-analyzed. We concluded that the top-layer exfoliation occurs as in the case with FWHM = 45 fs, but with slower speed. Meanwhile, the re-analysis of the data for FWHM = 45 fs [18] did not provide any update.

References

  1. Shimotsuma Y, Hirao K, Kazansky P. G, and Qiu J (2005): Three-Dimensional Micro- and Nano-Fabrication in Transparent Materials by Femtosecond Laser. Jpn. J. Appl. Phys. 44, 4735–4748

    Google Scholar 

  2. Kohn W, and Sham LJ (1965): Self-Consistent Equations Includinf Exchange and Correlation. Phys. Rev. 140: A1133–A1138

    Google Scholar 

  3. Hohenberg P and Kohn W (1964): Inhomogeneous Electron Gas. Phys. Rev. 136: B864–B871

    Google Scholar 

  4. Runge E and Gross EKU (1984): Density-Functional Theory for Time-Dependent System. Phys. Rev. Lett. 52:997–1000.

    Google Scholar 

  5. Suzuki M (1992):General Nonsymmetric Higher-Order Decomposition of Exponential Operators and Symplectic Integrators. J. Phys. Soc. Jpn, 61:3015–3019

    Google Scholar 

  6. Sugino O and Miyamoto Y (1999): Density-functional approach to electron dynsmics: Stable simulation under a self-consisten field. Phys. Rev.B59:2579–2586; (2002) Phys. Rev. B66:089901 (E).

    Google Scholar 

  7. Ehrenfest P (1927).: Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Z. Phys. 45:455–457

    Google Scholar 

  8. Miyamoto Y and Zhang H (2008): Testing the numerical stability of time-dependent density functional simulations using the Suzuki–Trotter formula. Phys. Rev. B77:165123-1–165123-5

    Google Scholar 

  9. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, and Firsov AA: (2004) Electric Field Effect in Atomically Thin Carbon Films, Science 306:666–669

    Google Scholar 

  10. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, and Kong J (2009): Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Lett. 9:30–35

    Google Scholar 

  11. Li X, Gai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jun I, Tutuc E, Banerjee SK, Colombo L, and Ruoff RS (2009): Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science 324:1312

    Google Scholar 

  12. Tromp RM and Hannon JB (2009): Thermodynamics and Kinetic of Graphene Growth on SiC(0001), Phys. Rev. Lett. 102:106104-1–106104-4

    Google Scholar 

  13. Carbone F, Baum P, Rudolf P, and Zewail AH (2008): Structural Preablation Dynamics of Graphene Observed by Ultrafast Electron Crystallography, Phys. Rev. Lett. 100:035501-1–035501-4

    Google Scholar 

  14. Raman RK, Murooka Y, Ruan CY, Yang T, Berber S and Tománek D (2008): Direct Observation of Optically Induced Transient Structures in Graphite Using Ultrafast Electron Crystallography, Phys. Rev. Lett. 101:077401-1–077401-4.

    Google Scholar 

  15. Jeschke HO, Garcia ME and Bennemann KH (2001): Theory for the Ultrafast Ablation of Graphite Films, Phys. Rev. Lett. 87:015003-1–015003-4

    Google Scholar 

  16. Ajyayam PM and Iijima S (1993): Capillarity-induced filling of carbon nanotubes. Nature, 361:333–334

    Google Scholar 

  17. Yanagi K, Iakoubovskii K, Kazaoui S, Minami N, Maniwa Y, Miyata Y, and Kataura H (2006): Light-harvesting function of β-carotene inside carbon nanotubes, Phys. Rev. B74:155420-1–155420-6

    Google Scholar 

  18. Miyamoto Y, Zhang H, and Tománek D (2010): Photoexfoliation of Graphene from Graphite: An Ab Initio Study, Phys. Rev. Lett. 104:208302-1–208302-4

    Google Scholar 

  19. Castro A, Marques MAL, Alonso JA, Bertsch GF, and Rubio A (2004): Excited states dynamics in time-dependent density functional theory, Eur. Phys. D28:211–218

    Google Scholar 

  20. Taguchi K, Haruyama J, and Watanabe K (2009): Laser-Driven Molecular Dissociation: Time-Dependent Density Functional Theory and Molecular Dynamics Simulations, J. Phys. Soc. Jpn, 78:0947071-1–094707-6

    Google Scholar 

  21. Zhang H and Miyamoto Y (2009): Modulation of alternating electric field inside photoexcited carbon nanotubes, Appl. Phys. Lett., 95:053109-1–053109-3

    Google Scholar 

  22. Miyamoto Y, Zhang H, and Rubio A (2010): First-Principles Simulation of Chemical Reactions in an HCl Molecule Embedded inside a C or BN Nanotube Induced by Ultrafast Laser Pulses, Phys. Rev. Lett., 105:248301-1–248301-4

    Google Scholar 

  23. Kleinman L and Bylander DM (1982): Efficacious Form for Model Pseudopotentials, Phys. Rev. Lett., 48:1424–1428

    Google Scholar 

Download references

Acknowledgements

All calculations shown in this work were done by using the Earth Simulator. These works were done under collaboration with D. Tománek, H. Zhang and A. Rubio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Miyamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miyamoto, Y. (2013). Massive Computation for Femtosecond Dynamics in Condensed Matters. In: Resch, M., Wang, X., Bez, W., Focht, E., Kobayashi, H. (eds) Sustained Simulation Performance 2012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32454-3_13

Download citation

Publish with us

Policies and ethics