Skip to main content

Clustering Algorithms

  • Chapter
Unsupervised Classification

Abstract

This chapter consists of detailed discussions regarding the clustering problem. Different well-known partitional clustering techniques like K-means, K-medoid, and fuzzy C-means are described. This is followed by a discussion on some distribution-based clustering techniques, namely expectation maximization. Hierarchical clustering techniques, like single linkage, average linkage and complete linkage, and density-based clustering techniques, like DB-Scan and GD-Scan, are then described in detail. Some grid-based clustering techniques, e.g., STRING are discussed next. The problem of clustering is thereafter formulated as one of optimization and some evolutionary clustering techniques are described. Finally it is shown how clustering can be posed as a multiobjective optimization problem and some recently developed multiobjective clustering techniques are described in brief.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Clustering/Expectation_Maximization_%28EM%29

  2. 2.

    http://www.dbs.informatik.uni-muenchen.de/Forschung/KDD/Clustering/

  3. 3.

    http://en.wikipedia.org/wiki/DBSCAN

References

  1. Anderberg, M.R.: Cluster Analysis for Application. Academic Press, New York (1973)

    Google Scholar 

  2. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: Ordering points to identify the clustering structure. In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD’99), pp. 49–60. ACM, Philadelphia (1999)

    Google Scholar 

  3. Asharaf, S., Murty, M.N.: An adaptive rough fuzzy single pass algorithm for clustering large data sets. Pattern Recogn. 36(12), 3015–3018 (2003)

    Article  MATH  Google Scholar 

  4. Asharaf, S., Murty, M.N.: Scalable non-linear support vector machine using hierarchical clustering. In: ICPR (1), pp. 908–911 (2006)

    Google Scholar 

  5. Asharaf, S., Murty, M.N., Shevade, S.K.: Cluster based core vector machine. In: ICDM, pp. 1038–1042 (2006)

    Google Scholar 

  6. Asharaf, S., Shevade, S.K., Murty, M.N.: Rough support vector clustering. Pattern Recogn. 38(10), 1779–1783 (2005)

    Article  MATH  Google Scholar 

  7. Attneave, F.: Symmetry information and memory for pattern. Am. J. Psychol. 68, 209–222 (1995)

    Article  Google Scholar 

  8. Babu, G.P., Murty, M.N.: A near-optimal initial seed value selection in K-means algorithm using a genetic algorithm. Pattern Recognit. Lett. 14(10), 763–769 (1993)

    Article  MATH  Google Scholar 

  9. Bandyopadhyay, S.: An automatic shape independent clustering technique. Pattern Recogn. 37(1), 33–45 (2004)

    Article  Google Scholar 

  10. Bandyopadhyay, S.: Genetic algorithms for clustering and fuzzy clustering. WIREs Data Min. Knowl. Discov. 1(6), 524–531 (2011)

    Article  Google Scholar 

  11. Bandyopadhyay, S., Maulik, U.: Non-parametric genetic clustering: Comparison of validity indices. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 31(1), 120–125 (2001)

    Article  Google Scholar 

  12. Bandyopadhyay, S., Maulik, U.: An evolutionary technique based on K-means algorithm for optimal clustering in R N. Inf. Sci. 146(1–4), 221–237 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bandyopadhyay, S., Maulik, U.: Genetic clustering for automatic evolution of clusters and application to image classification. Pattern Recognit. 35(6), 1197–1208 (2002)

    Article  MATH  Google Scholar 

  14. Bandyopadhyay, S., Maulik, U., Mukhopadhyay, A.: Multiobjective genetic clustering for pixel classification in remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 45(5), 1506–1511 (2007)

    Article  Google Scholar 

  15. Bandyopadhyay, S., Mukhopadhyay, A., Maulik, U.: An improved algorithm for clustering gene expression data. Bioinformatics 23(21), 2859–2865 (2007)

    Article  Google Scholar 

  16. Bandyopadhyay, S., Pal, S.K.: Classification and Learning Using Genetic Algorithms Applications in Bioinformatics and Web Intelligence. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  17. Bandyopadhyay, S., Saha, S.: GAPS: A clustering method using a new point symmetry based distance measure. Pattern Recognit. 40(12), 3430–3451 (2007)

    Article  MATH  Google Scholar 

  18. Bandyopadhyay, S., Saha, S.: A point symmetry based clustering technique for automatic evolution of clusters. IEEE Trans. Knowl. Data Eng. 20(11), 1–17 (2008)

    Article  Google Scholar 

  19. Bargiela, A., Pedrycz, W., Hirota, K.: Granular prototyping in fuzzy clustering. IEEE Trans. Fuzzy Syst. 12(5), 697–709 (2004)

    Article  Google Scholar 

  20. Beliakov, G., King, M.: Density based fuzzy c-means clustering of non-convex patterns. Eur. J. Oper. Res. 173, 717–728 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Berg, M.D., Kreveld, M.V., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  22. Bezdek, J.C.: Fuzzy mathematics in pattern classification. Ph.D. thesis, Cornell University, Ithaca, NY (1973)

    Google Scholar 

  23. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    Book  MATH  Google Scholar 

  24. Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. IEEE Trans. Syst. Man Cybern. 28(3), 301–315 (1998)

    Article  Google Scholar 

  25. Bhuyan, J.N., Raghavan, V.V., Elayavalli, V.K.: Genetic algorithm for clustering with an ordered representation. In: Proc. Int. Conf. on Genetic Algorithm ’91, pp. 408–415. Morgan Kaufmann, San Mateo (1991)

    Google Scholar 

  26. Bouchachia, A., Pedrycz, W.: Data clustering with partial supervision. Data Min. Knowl. Discov. 12(1), 47–78 (2006)

    Article  MathSciNet  Google Scholar 

  27. Bouchachia, A., Pedrycz, W.: Enhancement of fuzzy clustering by mechanisms of partial supervision. Fuzzy Sets Syst. 157(13), 1733–1759 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bradley, P.S., Fayyad, U.M., Reina, C.: Scaling clustering algorithms to large databases. In: Proc. Fourth International Conference on Knowledge Discovery and Data Mining, pp. 9–15 (1998)

    Google Scholar 

  29. Calinski, R.B., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat., Theory Methods 3(1), 1–27 (1974)

    MathSciNet  MATH  Google Scholar 

  30. Carpenter, G., Grossberg, S.: A massively parallel architecture for a self-organizing neural pattern recognition machine. Comput. Vis. Graph. Image Process. 37(3), 54–115 (1987)

    Article  MATH  Google Scholar 

  31. Carpenter, G., Grossberg, S.: ART2: Self-organization of stable category recognition codes for analog input patterns. Appl. Opt. 26(23), 4919–4930 (1987)

    Article  Google Scholar 

  32. Charalampidis, D.: A modified K-means algorithm for circular invariant clustering. IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1856–1865 (2005)

    Article  Google Scholar 

  33. Chen, Y.L., Hu, H.L.: An overlapping cluster algorithm to provide non-exhaustive clustering. Eur. J. Oper. Res. 173, 762–780 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Choi, J.N., Oh, S.K., Pedrycz, W.: Structural and parametric design of fuzzy inference systems using hierarchical fair competition-based parallel genetic algorithms and information granulation. Int. J. Approx. Reason. 49(3), 631–648 (2008)

    Article  Google Scholar 

  35. Chou, C.H., Su, M.C., Lai, E.: Symmetry as a new measure for cluster validity. In: 2nd WSEAS Int. Conf. on Scientific Computation and Soft Computing, Crete, Greece, pp. 209–213 (2002)

    Google Scholar 

  36. Chung, K.L., Lin, J.S.: Faster and more robust point symmetry-based K-means algorithm. Pattern Recognit. 40(2), 410–422 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chung, K.L., Lin, K.S.: An efficient line symmetry-based K-means algorithm. Pattern Recognit. Lett. 27(7), 765–772 (2006)

    Article  Google Scholar 

  38. Cole, R.M.: Clustering with genetic algorithms. Master’s thesis, Department of Computer Science, University of Western Australia, Australia (1998)

    Google Scholar 

  39. Cowgill, M.C., Harvey, R.J., Watson, L.T.: A genetic algorithm approach to cluster analysis. Comput. Math. Appl. 37(7), 99–108 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Dave, R.N.: Use of the adaptive fuzzy clustering algorithm to detect lines in digital images. Intell. Robots Comput. Vis. VIII 1192, 600–611 (1989)

    Google Scholar 

  41. Dave, R.N., Bhaswan, K.: Adaptive fuzzy c-shells clustering and detection of ellipses. IEEE Trans. Neural Netw. 3(5), 643–662 (1992)

    Article  Google Scholar 

  42. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1(4), 224–227 (1979)

    Article  Google Scholar 

  43. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc., Ser. B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  44. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)

    MATH  Google Scholar 

  45. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 32–57 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ester, M., Kriegal, H.P., Sander, J.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. of the Second International Conference on Knowledge Discovery and Data-mining, pp. 226–231. AAAI Press, Menlo Park (1996)

    Google Scholar 

  47. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: Density-based algorithm for discovering clusters in large spatial databases. In: Proceedings of the Second International Conference on Data Mining (KDD’96), Portland, OR, pp. 226–231 (1996)

    Google Scholar 

  48. Estivill-Castro, V., Murray, A.T.: Spatial clustering for data mining with genetic algorithms. In: Proceedings of the International ICSC Symposium on Engineering of Intelligent Systems, pp. 317–323 (1997)

    Google Scholar 

  49. Everitt, B.S., Landau, S., Leese, M.: Cluster Analysis. Arnold, London (2001)

    MATH  Google Scholar 

  50. Falkenauer, E.: Genetic Algorithms and Grouping Problems. Wiley, New York (1998)

    Google Scholar 

  51. Fränti, P., Kivijärvi, J., Kaukoranta, T., Nevalainen, O.: Genetic algorithms for large scale clustering problems. Comput. J. 40, 547–554 (1997)

    Article  Google Scholar 

  52. Gan, G., Ma, C., Wu, J.: Data Clustering – Theory, Algorithms, and Applications. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  53. Gath, I., Geva, A.B.: Unsupervised optimal fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 773–781 (1989)

    Article  Google Scholar 

  54. Grabusts, P., Borisov, A.: Using grid-clustering methods in data classification. In: 2002 International Conference on Parallel Computing in Electrical Engineering (PARELEC 2002), 22–25 September 2002, Warsaw, Poland, pp. 425–426. IEEE Comput. Soc., Los Alamitos (2002)

    Chapter  Google Scholar 

  55. Gustafson, D.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. Proc. IEEE Conf. Decision Contr. 17, 761–766 (1979)

    Google Scholar 

  56. Handl, J., Knowles, J.: An evolutionary approach to multiobjective clustering. IEEE Trans. Evol. Comput. 11(1), 56–76 (2007)

    Article  Google Scholar 

  57. Hansen, P., Mladenovic, N.: J-means: A new local search heuristic for minimum sum of squares clustering. Pattern Recognit. 34(2), 405–413 (2001)

    Article  MATH  Google Scholar 

  58. Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. Inf. Process. Lett. 76, 175–181 (2000). http://dl.acm.org/citation.cfm?id=364456.364469

    Article  MathSciNet  MATH  Google Scholar 

  59. Hartwig, F., Dearing, B.: Exploratory Data Analysis. Sage, Thousand Oaks (1979)

    Google Scholar 

  60. Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Computation. Addison-Wesley, Reading (1991)

    Google Scholar 

  61. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  62. Höppner, F.: Fuzzy shell clustering algorithms in image processing: Fuzzy c-rectangular and 2-rectangular shells. IEEE Trans. Fuzzy Syst. 5(4), 599–613 (1997)

    Article  Google Scholar 

  63. Hruschka, E.R., Campello, R.J.G.B., de Castro, L.N.: Evolutionary algorithms for clustering gene-expression data. In: Proc. 4th IEEE Int. Conference on Data Mining, pp. 403–406 (2004)

    Chapter  Google Scholar 

  64. Hruschka, E.R., Campello, R.J.G.B., de Castro, L.N.: Improving the efficiency of a clustering genetic algorithm. In: Proc. 9th Ibero-American Conference on Artificial Intelligence, Lecture Notes in Computer Science, vol. 3315, pp. 861–870 (2004)

    Google Scholar 

  65. Hruschka, E.R., Campello, R.J.G.B., de Castro, L.N.: Evolving clusters in gene-expression data. Inf. Sci. 176(13), 1898–1927 (2006)

    Article  Google Scholar 

  66. Hruschka, E.R., Campello, R.J.G.B., Freitas, A.A., de Carvalho, A.C.P.L.F.: A survey of evolutionary algorithms for clustering. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 39(2), 133–155 (2009)

    Article  Google Scholar 

  67. Hruschka, E.R., Ebecken, N.F.F.: A genetic algorithm for cluster analysis. Intell. Data Anal. 7(1), 15–25 (2003)

    Google Scholar 

  68. Hu, M.K.: Visual pattern recognition by moment invariants. IEEE Trans. Inf. Theory 8(2), 179–187 (1962)

    Article  MATH  Google Scholar 

  69. Hughes, E.J.: Evolutionary many-objective optimization: Many once or one many. In: Proceedings of 2005 Congress on Evolutionary Computation, Edinburgh, Scotland, UK, September 2–5, 2005, pp. 222–227 (2005)

    Chapter  Google Scholar 

  70. Ingber, L.: Very fast simulated re-annealing. Math. Comput. Model. 12(8), 967–973 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  71. Ishibuchi, H., Doi, T., Nojima, Y.: Incorporation of scalarizing fitness functions into evolutionary multiobjective optimization algorithms. In: Parallel Problem Solving from Nature IX (PPSN-IX), vol. 4193, pp. 493–502 (2006)

    Chapter  Google Scholar 

  72. Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 28(3), 392–403 (1998)

    Article  Google Scholar 

  73. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans. Evol. Comput. 6(6), 721–741 (1984)

    Google Scholar 

  74. Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull. Soc. Vaud. Sci. Nat. 37, 547–579 (1901)

    Google Scholar 

  75. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  76. Jain, A.K., Duin, P., Jianchang, M.: Statistical pattern recognition: A review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)

    Article  Google Scholar 

  77. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  78. Jardine, N., Sibson, R.: Mathematical Taxonomy. Wiley, New York (1971)

    MATH  Google Scholar 

  79. Jaszkiewicz, A.: Comparison of local search-based metaheuristics on the multiple objective knapsack problem. Found. Comput. Dec. Sci. 26(1), 99–120 (2001)

    MathSciNet  Google Scholar 

  80. Jolliffe, I.: Principal Component Analysis. Springer Series in Statistics. Springer, England (1986)

    Google Scholar 

  81. Kandel, A.: Fuzzy Techniques in Pattern Recognition. Wiley-Interscience, New York (1982)

    MATH  Google Scholar 

  82. Kandel, A.: Fuzzy Mathematical Techniques with Applications. Addison-Wesley, New York (1986)

    MATH  Google Scholar 

  83. Kankanala, L., Murty, M.N.: Hybrid approaches for clustering. In: PReMI, pp. 25–32 (2007)

    Google Scholar 

  84. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient K-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

    Article  Google Scholar 

  85. Kaufman, L., Rosseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)

    Book  Google Scholar 

  86. Kim, D.J., Park, Y.W., Park, D.J.: A novel validity index for determination of the optimal number of clusters. IEICE Trans. Inf. Syst. D-E84(2), 281–285 (2001)

    Google Scholar 

  87. Kim, D.W., Lee, K.H., Lee, D.: Fuzzy cluster validation index based on inter-cluster proximity. Pattern Recognit. Lett. 24(15), 2561–2574 (2003)

    Article  Google Scholar 

  88. Kim, T.H., Barrera, L.O., Zheng, M., Qu, C., Singer, M.A., Richmond, T.A., Wu, Y., Green, R.D., Ren, B.: A high-resolution map of active promoters in the human genome. Nature 436, 876–880 (2005)

    Article  Google Scholar 

  89. Kim, Y.I., Kim, D.W., Lee, D., Lee, K.H.: A cluster validation index for GK cluster analysis based on relative degree of sharing. Inf. Sci. 168(1–4), 225–242 (2004)

    Article  MATH  Google Scholar 

  90. Kirkpatrick, S.: Optimization by simulated annealing: Quantitative studies. J. Stat. Phys. 34(5/6), 975–986 (1984)

    Article  MathSciNet  Google Scholar 

  91. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  92. Kirpatrick, S., Vecchi, M.P.: Global wiring by simulated annealing. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. CAD-2(4), 215–222 (1983)

    Google Scholar 

  93. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

    Article  Google Scholar 

  94. Kohonen, T.: The ‘neural’ phonetic typewriter. IEEE Comput. 27(3), 11–12 (1988)

    Article  Google Scholar 

  95. Kohonen, T.: Self-Organization and Associative Memory, 3rd edn. Springer, New York (1989)

    Book  Google Scholar 

  96. Konak, A., Coit, D., Smith, A.: Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006). http://linkinghub.elsevier.com/retrieve/pii/S0951832005002012

    Article  Google Scholar 

  97. Korkmaz, E.E., Du, J., Alhajj, R., Barker, K.: Combining advantages of new chromosome representation scheme and multi-objective genetic algorithms for better clustering. Intell. Data Anal. 10(2), 163–182 (2006)

    Google Scholar 

  98. Kövesi, B., Boucher, J.M., Saoodi, S.: Stochastic K-means algorithm for vector quantization. Pattern Recognit. Lett. 22(6–7), 603–610 (2001)

    Article  MATH  Google Scholar 

  99. Krishna, K., Murty, M.N.: Genetic K-means algorithm. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 29(3), 433–439 (1999)

    Article  Google Scholar 

  100. Krishnapuram, R., Nasraoui, O., Frigui, H.: The fuzzy c-spherical shells algorithm: A new approach. IEEE Trans. Neural Netw. 3(5), 663–671 (1992)

    Article  Google Scholar 

  101. Krovi, R.: Genetic algorithms for clustering: A preliminary investigation. In: Proceedings of the 25th Hawaii Int. Conference on System Sciences, vol. 4, pp. 540–544 (1992)

    Google Scholar 

  102. Kuncheva, L.I., Bezdek, J.C.: Selection of cluster prototypes from data by a genetic algorithm. In: Proceedings of the 5th European Congress on Intelligent Techniques and Soft Computing, pp. 1683–1688 (1997)

    Google Scholar 

  103. Kwanghoon, S., Jung, K.H., Alexander, W.E.: A mean field annealing approach to robust corner detection. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 28(1), 82–90 (1998)

    Article  Google Scholar 

  104. Kwon, S.H.: Cluster validity index for fuzzy clustering. Electron. Lett. 34(22), 2176–2177 (1998)

    Article  Google Scholar 

  105. Lance, G., Williams, W.: Mixed-data classificatory programs. I. Agglomerative systems. Aust. Comput. J. 1, 15–20 (1967)

    Google Scholar 

  106. Lange, T., Roth, V., Braun, M.L., Buhmann, J.M.: Stability-based validation of clustering solutions. Neural Comput. 16(6), 1299–1323 (2004)

    Article  MATH  Google Scholar 

  107. Laszlo, M., Mukherjee, S.: A genetic algorithm using hyper-quadtrees for low-dimensional K-means clustering. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 533–543 (2006)

    Article  Google Scholar 

  108. Leon, E., Nasraoui, O., Gomez, J.: ECSAGO: Evolutionary clustering with self adaptive genetic operators. In: Proc. IEEE Congress on Evolutionary Computation, July 16–21, 2006, pp. 1768–1775 (2006)

    Google Scholar 

  109. Likas, A., Vlassis, N., Verbeek, J.J.: The global k-means clustering algorithm. Pattern Recognit. 36, 451–461 (2003)

    Article  Google Scholar 

  110. Lin, J.Y., Peng, H., Xie, J.M., Zheng, Q.L.: Novel clustering algorithm based on central symmetry. In: Proceedings of 2004 International Conference on Machine Learning and Cybernetics, 26–29 August 2004, vol. 3, pp. 1329–1334 (2004)

    Google Scholar 

  111. Loia, V., Pedrycz, W., Senatore, S.: Semantic web content analysis: A study in proximity-based collaborative clustering. IEEE Trans. Fuzzy Syst. 15(6), 1294–1312 (2007)

    Article  Google Scholar 

  112. Lu, Y., Lu, S., Fotouhi, F., Deng, Y., Brown, S.J.: FGKA: A fast genetic K-means clustering algorithm. In: SAC ’04: Proceedings of the 2004 ACM Symposium on Applied Computing, pp. 622–623. ACM, New York (2004)

    Chapter  Google Scholar 

  113. Lu, Y., Lu, S., Fotouhi, F., Deng, Y., Brown, S.J.: Incremental genetic K-means algorithm and its application in gene expression data analysis. BMC Bioinform. 5, 172 (2004)

    Article  Google Scholar 

  114. Lucasius, C.B., Dane, A.D., Kateman, G.: On K-medoid clustering of large data sets with the aid of a genetic algorithm: Background, feasibility and comparison. Anal. Chim. Acta 282, 647–669 (1993)

    Article  Google Scholar 

  115. Ma, P.C.H., Chan, K.C.C., Yao, X., Chiu, D.K.Y.: An evolutionary clustering algorithm for gene expression microarray data analysis. IEEE Trans. Evol. Comput. 10(3), 296–314 (2006)

    Article  Google Scholar 

  116. Man, Y., Gath, I.: Detection and separation of ring-shaped clusters using fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 16(8), 855–861 (1994)

    Article  Google Scholar 

  117. Mao, J., Jain, A.K.: A self-organizing network for hyperellipsoidal clustering. IEEE Trans. Neural Netw. 7(1), 16–29 (1996)

    Article  Google Scholar 

  118. Marden, J.I.: Analyzing and Modeling Rank Data. Chapman & Hall, London (1995)

    MATH  Google Scholar 

  119. Matake, N., Hiroyasu, T., Miki, M., Senda, T.: Multiobjective clustering with automatic k-determination for large-scale data. In: GECCO ’07: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 861–868. ACM, New York (2007)

    Chapter  Google Scholar 

  120. Maulik, U., Bandyopadhyay, S.: Genetic algorithm based clustering technique. Pattern Recognit. 33(9), 1455–1465 (2000)

    Article  Google Scholar 

  121. Maulik, U., Bandyopadhyay, S.: Performance evaluation of some clustering algorithms and validity indices. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1650–1654 (2002)

    Article  Google Scholar 

  122. Maulik, U., Bandyopadhyay, S.: Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification. IEEE Trans. Geosci. Remote Sens. 41(5), 1075–1081 (2003)

    Article  Google Scholar 

  123. Maulik, U., Bandyopadhyay, S., Trinder, J.: SAFE: An efficient feature extraction technique. J. Knowl. Inf. Syst. 3(3), 374–387 (2001)

    Article  MATH  Google Scholar 

  124. Maulik, U., Mukhopadhyay, A., Bandyopadhyay, S.: Combining Pareto-optimal clusters using supervised learning for identifying co-expressed genes. BMC Bioinform. 27, 1197–1208 (2009)

    Google Scholar 

  125. Maulik, U., Bandyopadhyay, S., Mukhopadhyay, A.: Multiobjective Genetic Algorithms for Clustering – Applications in Data Mining and Bioinformatics. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  126. Merz, P., Zell, A.: Clustering gene expression profiles with memetic algorithms. In: PPSN VII: Proceedings of the 7th International Conference on Parallel Problem Solving from Nature, pp. 811–820. Springer, London (2002)

    Chapter  Google Scholar 

  127. Metropolis, N., Rosenbluth, A.W., Rosenbloth, M.N., Teller, A.H., Teller, E.: Equation of state calculation by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  128. Mezzich, J.E.: Evaluating clustering methods for psychiatric-diagnosis. Biol. Psychiatry 13, 265–281 (1978)

    Google Scholar 

  129. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, New York (1992)

    MATH  Google Scholar 

  130. Mikheev, A., Vincent, L., Faber, V.: High-quality polygonal contour approximation based on relaxation. In: Proceedings of the Sixth International Conference on Document Analysis and Recognition, p. 361. IEEE Comput. Soc., Washington (2001). http://dl.acm.org/citation.cfm?id=876867.877738

    Chapter  Google Scholar 

  131. Milligan, G.: An algorithm for generating artificial test clusters. Psychometrika 50(1), 123–127 (1981)

    Article  MathSciNet  Google Scholar 

  132. Milligan, G.W., Cooper, C.: An examination of procedures for determining the number of clusters in a data set. Psychometrika 50(2), 159–179 (1985)

    Article  Google Scholar 

  133. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  134. Mount, D.M., Arya, S.: ANN: A library for approximate nearest neighbor searching (2005). http://www.cs.umd.edu/~mount/ANN

  135. Mukhopadhyay, A., Maulik, U.: Unsupervised pixel classification in satellite imagery using multiobjective fuzzy clustering combined with SVM classifier. IEEE Trans. Geosci. Remote Sens. 47(4), 1132–1138 (2009)

    Article  Google Scholar 

  136. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S.: Multi-objective genetic algorithm based fuzzy clustering of categorical attributes. IEEE Trans. Evol. Comput. 13(5), 991–1005 (2009)

    Article  Google Scholar 

  137. Murthy, C.A., Chowdhury, N.: In search of optimal clusters using genetic algorithms. Pattern Recognit. Lett. 17(8), 825–832 (1996)

    Article  Google Scholar 

  138. Nam, D., Park, C.H.: Pareto-based cost simulated annealing for multiobjective optimization. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL’02), vol. 2, pp. 522–526. Nanyang Technical University, Orchid Country Club, Singapore (2002)

    Google Scholar 

  139. Nam, D.K., Park, C.H.: Multiobjective simulated annealing: A comparative study to evolutionary algorithms. Int. J. Fuzzy Syst. 2(2), 87–97 (2000)

    Google Scholar 

  140. Ng, R., Han, J.: Efficient and effective clustering method for spatial data mining. In: Proceedings of the 1994 International Conference on Very Large Data Bases, Santiago, Chile, pp. 144–155 (1994)

    Google Scholar 

  141. Ng, R., Han, J.: Knowledge discovery in large spatial databases: Focusing techniques for efficient class identification. In: Proceedings of the 4th International Symposium on Large Spatial Databases (SSD’95), Portland, ME, pp. 67–82 (1995)

    Google Scholar 

  142. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Heidelberg (2007)

    Google Scholar 

  143. Nock, R., Nielsen, F.: On weighting clustering. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1223–1235 (2006)

    Article  Google Scholar 

  144. Pakhira, M.K., Maulik, U., Bandyopadhyay, S.: Validity index for crisp and fuzzy clusters. Pattern Recognit. 37(3), 487–501 (2004)

    Article  MATH  Google Scholar 

  145. Pal, P., Chanda, B.: A symmetry based clustering technique for multi-spectral satellite imagery. In: ICVGIP (2002)

    Google Scholar 

  146. Pal, S.K.: Fuzzy set theoretic measures for automatic feature evaluation – II. Inf. Sci. 64, 165–179 (1992)

    Article  MATH  Google Scholar 

  147. Pal, S.K., Majumder, D.D.: Fuzzy Mathematical Approach to Pattern Recognition. Wiley, New York (1986)

    MATH  Google Scholar 

  148. Pal, S.K., Mandal, D.P.: Linguistic recognition system based on approximate reasoning. Inf. Sci. 61, 135–161 (1992)

    Article  Google Scholar 

  149. Pal, S.K., Mitra, S.: Fuzzy versions of Kohonen’s net and MLP-based classification: Performance evaluation for certain nonconvex decision regions. Inf. Sci. 76, 297–337 (1994)

    Article  MATH  Google Scholar 

  150. Park, Y.J., Song, M.S.: A genetic algorithm for clustering problems. In: Proc. 3rd Annual Conference on Genetic Programming, Paris, France, pp. 568–575 (1998)

    Google Scholar 

  151. Pavlidis, T.: Structural Pattern Recognition. Springer, Berlin (1977)

    MATH  Google Scholar 

  152. Pedrycz, W.: A fuzzy cognitive structure for pattern recognition. Pattern Recognit. Lett. 9(5), 305–313 (1989)

    Article  MATH  Google Scholar 

  153. Pedrycz, W.: Fuzzy sets in pattern recognition: Methodology and methods. Pattern Recognit. 23, 121–146 (1990)

    Article  Google Scholar 

  154. Pedrycz, W.: Fuzzy clustering with a knowledge-based guidance. Pattern Recognit. Lett. 25(4), 469–480 (2004)

    Article  MathSciNet  Google Scholar 

  155. Pedrycz, W.: Knowledge-based clustering in computational intelligence. In: Challenges for Computational Intelligence, pp. 317–341. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  156. Pedrycz, W.: A dynamic data granulation through adjustable fuzzy clustering. Pattern Recognit. Lett. 29(16), 2059–2066 (2008)

    Article  Google Scholar 

  157. Pedrycz, W., Amato, A., Lecce, V.D., Piuri, V.: Fuzzy clustering with partial supervision in organization and classification of digital images. IEEE Trans. Fuzzy Syst. 16(4), 1008–1026 (2008)

    Article  Google Scholar 

  158. Pedrycz, W., Hirota, K.: A consensus-driven fuzzy clustering. Pattern Recognit. Lett. 29(9), 1333–1343 (2008)

    Article  Google Scholar 

  159. Pedrycz, W., Loia, V., Senatore, S.: P-FCM: A proximity-based fuzzy clustering. Fuzzy Sets Syst. 148(1), 21–41 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  160. Pedrycz, W., Rai, P.: Collaborative clustering with the use of fuzzy c-means and its quantification. Fuzzy Sets Syst. 159(18), 2399–2427 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  161. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  162. Raftery, A.: A note on Bayes factors for log-linear contingency table models with vague prior information. J. R. Stat. Soc. 48(2), 249–250 (1986)

    MathSciNet  MATH  Google Scholar 

  163. Rechenberg, I.: Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution. Frommann-Holzboog, Stuttgart (1973)

    Google Scholar 

  164. Richards, J.A.: Remote Sensing Digital Image Analysis: An Introduction. Springer, New York (1993)

    Book  Google Scholar 

  165. Ripon, K.S.N., Tsang, C.H., Kwong, S., Ip, M.K.: Multi-objective evolutionary clustering using variable-length real jumping genes genetic algorithm. In: ICPR’06: Proceedings of the 18th International Conference on Pattern Recognition, pp. 1200–1203. IEEE Comput. Soc., Washington (2006)

    Google Scholar 

  166. Rousseeuw, P.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  167. Ruck, D.W., Rogers, S.K., Kabrisky, M.: Feature selection using a multilayer perceptron. Network 2(2), 1–14 (1990). http://portal.acm.org.offcampus.lib.washington.edu/citation.cfm?id=1497653.1498412

    Google Scholar 

  168. Rudolph, G.: Convergence analysis of canonical genetic algorithms. IEEE Trans. Neural Netw. 5(1), 96–101 (1994)

    Article  Google Scholar 

  169. Runyon, R., Haber, A.: Fundamentals of Behavioral Statistics. Addison-Wesley, Reading (1976)

    Google Scholar 

  170. Saha, S., Bandyopadhyay, S.: A new line symmetry distance and its application to data clustering. J. Comput. Sci. Technol. 24(3), 544–556 (2009)

    Article  Google Scholar 

  171. Saha, S., Bandyopadhyay, S.: A new multiobjective simulated annealing based clustering technique using symmetry. Pattern Recognit. Lett. 30(15), 1392–1403 (2009)

    Article  Google Scholar 

  172. Saha, S., Bandyopadhyay, S.: A new point symmetry based fuzzy genetic clustering technique for automatic evolution of clusters. Inf. Sci. 179(19), 3230–3246 (2009)

    Article  MATH  Google Scholar 

  173. Saha, S., Bandyopadhyay, S.: A new symmetry based multiobjective clustering technique for automatic evolution of clusters. Pattern Recognit. 43(3), 738–751 (2010)

    Article  MATH  Google Scholar 

  174. Saha, S., Bandyopadhyay, S.: A generalized automatic clustering algorithm in a multiobjective framework. Appl. Soft Comput. 13(1), 89–108 (2013)

    Article  Google Scholar 

  175. Saha, S., Bandyopadhyay, S.: Application of a new symmetry based cluster validity index for satellite image segmentation. IEEE Geosci. Remote Sens. Lett. 5(2), 166–170 (2008)

    Article  Google Scholar 

  176. Saha, S., Bandyopadhyay, S.: Performance evaluation of some symmetry based cluster validity indices. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 39(4), 420–425 (2009)

    Article  Google Scholar 

  177. Saha, S., Bandyopadhyay, S.: A validity index based on connectivity. In: ICAPR, pp. 91–94. IEEE Comput. Soc., Los Alamitos (2009)

    Google Scholar 

  178. Saha, S., Bandyopadhyay, S.: On principle axis based line symmetry clustering techniques. Memetic Comput. 3(2), 129–144 (2011)

    Article  Google Scholar 

  179. Saha, S., Maulik, U.: Use of symmetry and stability for data clustering. Evol. Intell. 3(3-4), 103–122 (2010)

    Article  MATH  Google Scholar 

  180. Sander, J., Ester, M., Kriegel, H.P., Xu, X.: Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications. Data Min. Knowl. Discov. 2(2), 169–194 (1998)

    Article  Google Scholar 

  181. Schaffer, J.: Multiple objective optimization with vector evaluated genetic algorithms. In: Genetic Algorithms and Their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 93–100 (1985)

    Google Scholar 

  182. Schott, J.R.: Fault tolerant design using single and multi-criteria genetic algorithms. Master’s thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Boston, MA (1995)

    Google Scholar 

  183. Selim, S.Z., Ismail, M.A.: K-means type algorithms: A generalized convergence theorem and characterization of local optimality. IEEE Trans. Pattern Anal. Mach. Intell. 6, 81–87 (1984)

    Article  MATH  Google Scholar 

  184. Serafini, P.: Simulated annealing for multiple objective optimization problems. In: Proceedings of the Tenth International Conference on Multiple Criteria Decision Making: Expand and Enrich the Domains of Thinking and Application, vol. 1, pp. 283–292. Springer, Berlin (1994)

    Google Scholar 

  185. Sheng, W., Liu, X.: A hybrid algorithm for k-medoid clustering of large data sets. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 77–82 (2004)

    Google Scholar 

  186. Sheng, W., Swift, S., Zhang, L., Liu, X.: A weighted sum validity function for clustering with a hybrid niching genetic algorithm. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 35(6), 56–67 (2005)

    Article  Google Scholar 

  187. Siedlecki, W., Sklansky, J.: A note on genetic algorithms for large-scale feature selection. Pattern Recognit. Lett. 10, 335–347 (1989). http://dl.acm.org/citation.cfm?id=78354.78362

    Article  MATH  Google Scholar 

  188. Alves, V.S., Campello, R.J.G.B., Hruschka, E.R.: Towards a fast evolutionary algorithm for clustering. In: Proc. IEEE Congress on Evolutionary Computation, pp. 6240–6247 (2006)

    Google Scholar 

  189. Smith, K.I., Everson, R.M., Fieldsend, J.E.: Dominance measures for multi-objective simulated annealing. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation (CEC’04), pp. 23–30 (2004)

    Google Scholar 

  190. Smith, K.I., Everson, R.M., Fieldsend, J.E., Murphy, C., Misra, R.: Dominance-based multi-objective simulated annealing. IEEE Trans. Evol. Comput. 12(3), 323–342 (2008)

    Article  Google Scholar 

  191. Sontag, E., Sussman, H.: Image restoration and segmentation using the annealing algorithm. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. CAD-2(4), 215–222 (1983)

    Google Scholar 

  192. Spath, H.: Cluster Analysis Algorithms. Ellis Horwood, Chichester (1989)

    Google Scholar 

  193. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  194. Srinivas, M., Patnaik, L.M.: Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans. Syst. Man Cybern. 24(4), 656–667 (1994)

    Article  Google Scholar 

  195. Staiano, A., Tagliaferri, R., Pedrycz, W.: Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering. Neurocomputing 69(13-15), 1570–1581 (2006)

    Article  Google Scholar 

  196. Storn, R., Price, K.: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  197. Su, M.C., Chou, C.H.: Application of associative memory in human face detection. In: 1999 International Joint Conference on Neural Networks, pp. 3194–3197 (1999)

    Google Scholar 

  198. Su, M.C., Chou, C.H.: A modified version of the K-means algorithm with a distance based on cluster symmetry. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 674–680 (2001)

    Article  Google Scholar 

  199. Su, M.C., DeClaris, N., Kang Liu, T.: Application of neural networks in cluster analysis. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, 1997, ‘Computational Cybernetics and Simulation’, Orlando, FL, vol. 1, pp. 1–6 (1997)

    Google Scholar 

  200. Su, M.C., Liu, Y.C.: A new approach to clustering data with arbitrary shapes. Pattern Recognit. 38, 1887–1901 (2005)

    Article  MATH  Google Scholar 

  201. Suckling, J., Sigmundsson, T., Greenwood, K., Bullmore, E.: A modified fuzzy clustering algorithm for operator independent brain tissue classification of dual echo MR images. J. Magn. Reson. Imaging 17(7), 1065–1076 (1999)

    Article  Google Scholar 

  202. Suman, B.: Study of self-stopping PDMOSA and performance measure in multiobjective optimization. Comput. Chem. Eng. 29(5), 1131–1147 (2005)

    Article  Google Scholar 

  203. Suman, B.: Multiobjective simulated annealing – A metaheuristic technique for multiobjective optimization of a constrained problem. Found. Comput. Dec. Sci. 27(3), 171–191 (2002)

    Google Scholar 

  204. Suman, B.: Simulated annealing based multiobjective algorithm and their application for system reliability. Eng. Optim. 35(4), 391–416 (2003)

    Article  Google Scholar 

  205. Suman, B.: Study of simulated annealing based multiobjective algorithm for multiobjective optimization of a constrained problem. Comput. Chem. Eng. 28(9), 1849–1871 (2004)

    Article  Google Scholar 

  206. Suman, B., Kumar, P.: A survey of simulated annealing as a tool for single and multiobjective optimization. J. Oper. Res. Soc. 57(10), 1143–1160 (2006)

    Article  MATH  Google Scholar 

  207. Suppapitnarm, A., Seffen, K., Parks, G., Clarkson, P.: A simulated annealing algorithm for multiobjective optimization. Eng. Optim. 33(1), 59–85 (2000)

    Article  Google Scholar 

  208. Szu, H.H., Hartley, R.L.: Fast simulated annealing. Phys. Lett. A 122(3–4), 157–162 (1987)

    Article  Google Scholar 

  209. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Springer, Berlin (2005)

    Google Scholar 

  210. Teknomo, K.: Similarity measurement. http://people.revoledu.com/kardi/tutorial/Similarity/

  211. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 3rd edn. Academic Press, Orlando (2006)

    MATH  Google Scholar 

  212. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters via the gap statistics. J. R. Stat. Soc. 63, 411–423 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  213. Tou, J.T., Gonzalez, R.C.: Pattern Recognition Principles. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  214. Toussaint, G.T.: The relative neighborhood graph of a finite planar set. Pattern Recognit. 12, 261–268 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  215. Toussaint, G.T.: Pattern recognition and geometrical complexity. In: Proc. Fifth International Conf. on Pattern Recognition, Miami Beach, December 1980, pp. 1324–1347 (1980)

    Google Scholar 

  216. Tseng, L., Yang, S.: Genetic algorithms for clustering, feature selection, and classification. In: Proceedings of the IEEE International Conference on Neural Networks, Houston, pp. 1612–1616 (1997)

    Google Scholar 

  217. Tuyttens, D., Teghem, J., El-Sherbeny, N.: A particular multiobjective vehicle routing problem solved by simulated annealing. In: Metaheuristics for Multiobjective Optimization, vol. 535, 133–152 (2003)

    Chapter  Google Scholar 

  218. Ulungu, E.L., Teghaem, J., Fortemps, P., Tuyttens, D.: MOSA method: A tool for solving multiobjective combinatorial decision problems. J. Multi-Criteria Decis. Anal. 8(4), 221–236 (1999)

    Article  MATH  Google Scholar 

  219. Varma, S., Asharaf, S., Murty, M.N.: Rough core vector clustering. In: PReMI, pp. 304–310 (2007)

    Google Scholar 

  220. Vijaya, P.A., Murty, M.N., Subramanian, D.K.: Leaders-subleaders: An efficient hierarchical clustering algorithm for large data sets. Pattern Recognit. Lett. 25(4), 505–513 (2004)

    Article  Google Scholar 

  221. Vijaya, P.A., Murty, M.N., Subramanian, D.K.: An efficient hybrid hierarchical agglomerative clustering (HHAC) technique for partitioning large data sets. In: PReMI, pp. 583–588 (2005)

    Google Scholar 

  222. Wang, W., Zhang, Y.: On fuzzy cluster validity indices. Fuzzy Sets Syst. 158(19), 2095–2117 (2007)

    Article  MATH  Google Scholar 

  223. Wang, W., Yang, J., Muntz, R.R.: STING: A statistical information grid approach to spatial data mining. In: Proceedings of the 23rd International Conference on Very Large Data Bases, VLDB’97, pp. 186–195. Morgan Kaufmann, San Francisco (1997). http://dl.acm.org/citation.cfm?id=645923.758369

    Google Scholar 

  224. Wang, W., Yang, J., Muntz, R.R.: STING+: An approach to active spatial data mining. In: Proceedings of the 15th IEEE International Conference on Data Engineering, Sydney, Australia, March 1999, pp. 116–125 (1999)

    Google Scholar 

  225. Webb, A.: Statistical Pattern Recognition. Wiley, Chichester (2002)

    Book  MATH  Google Scholar 

  226. Wong, C., Chen, C., Su, M.: A novel algorithm for data clustering. Pattern Recognit. 34, 425–442 (2001)

    Article  MATH  Google Scholar 

  227. Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 13(8), 841–847 (1991)

    Article  Google Scholar 

  228. Yan, H.: Fuzzy curve-tracing algorithm. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 31(5), 768–780 (2001)

    Article  Google Scholar 

  229. Yip, A.M., Ding, C., Chan, T.F.: Dynamic cluster formation using level set methods. IEEE Trans. Pattern Anal. Mach. Intell. 28(6), 877–889 (2006)

    Article  Google Scholar 

  230. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An efficient data clustering method for very large databases. In: Proc. of the 1996 ACM SIGMOD International Conference on Management of Data, pp. 103–114 (1996)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bandyopadhyay, S., Saha, S. (2013). Clustering Algorithms. In: Unsupervised Classification. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32451-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32451-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32450-5

  • Online ISBN: 978-3-642-32451-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics