Skip to main content

Interaction Effects between Strip and Work Roll during Flat Rolling Process

  • Conference paper
Process Machine Interactions

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Abstract

During the flat rolling process (cold or hot), the strip flatness and thickness profile are highly influenced by the interaction effects between strip and work rolls. To understand and analyze these effects a new modeling concept was developed. Within this concept, the tool simulations are separated from the process simulation. With the help of an automatic coupling module, the influences of the tool effects are realized within the process simulation. With this modeling concept, three types of interaction phenomena are studied and validated using experiments: elastic roll effects during the cold rolling process, work roll thermal effects during the hot rolling process and tribological effects (abrasive wear) on the process simulation. It was also shown that, compared to the single FE model, this modeling concept is relatively faster and suitable for large 3D models without losing the quality of the predicted results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kainz, A., Krimplelstätter, K., Zemen, K.: FE Simulation of thin strip and temper rolling processes. In: ABAQUS Austria User Conference (2003)

    Google Scholar 

  2. Kim, T.H., Lee, W.H.: An integrated FE process model for the prediction of strip profile in flat rolling. ISIJ 43, 1947–1956 (2003)

    Article  Google Scholar 

  3. Ohe, K., Kajiura, S., Simada, S., Mizuta, A., Morimoto, Y., Fujino, T., Anraku, K.: Development of shape control in plate rolling. In: METEC Conference proceedings, vol. 2, pp. 78–85 (1994)

    Google Scholar 

  4. Buessler, P., Montmitonnent, P.: A review on theoretical analysis of rolling in Europe. ISIJ 31, 525–538 (1991)

    Article  Google Scholar 

  5. Guo, R.-M.: Development, verification and application of an optimal crown shape control model for rolling mills with multiple control devices. In: AISE Conference (1995)

    Google Scholar 

  6. Tseng, A.A.: A numerical heat transfer analysis of strip rolling. ASME 106, 512–517 (1984)

    Article  Google Scholar 

  7. Hsu, C.T., Evans, R.W.: Finite element analysis on the hot rolling of steel. Adv. Tech. Plasticity 2, 587–593 (1990)

    Google Scholar 

  8. Sun, C.G., Hwang, S.M.: Prediction of roll thermal profile in hot strip rolling by the Finite element method. ISIJ 40, 794–801 (2000)

    Article  Google Scholar 

  9. Sun, C.G., Hwang, S.M., Ryoo, S.R., Kwak, W.J.: An integrated FE process model for precision analysis of thermo-mechanical behaviour of the rolls and strip in hot strip rolling. Comp. Methods. Appl. Mech. Engg. 191, 4015–4033 (2002)

    Article  MATH  Google Scholar 

  10. Lee, J.H., Hwang, S.M., Park, H.D.: FE-based on-line model for the prediction of roll force and roll power in hot strip rolling. ISIJ 40, 1013–1018 (2000)

    Article  Google Scholar 

  11. Jiang, Z.Y., Tieu, A.K.: Contact mechanics and work roll wear in cold rolling of thin strip. Wear Journal 263, 1447–1453 (2007)

    Article  Google Scholar 

  12. Magne, A., Gaspard, C., Gabriel, M.: Wear behaviour of steels for hot working rolling-mill rolls. CRM 57, 25–39 (1980)

    Google Scholar 

  13. Mohammed, T., Widell, B.: Roll wear evaluation of HSS, HiCr and IC work rolls in hot strip mill. Steel Research 74, 624–630 (2003)

    Google Scholar 

  14. Kivilcim, E.N., Nürnberg, G., Golle, M., Hoffmann, H.: Simulation of wear on sheet metal forming tools—An energy approach. Journal of Wear, 357–363 (2008)

    Google Scholar 

  15. Archard, J.F., Hirst, W.: Wear of metals under un-lubricated conditions. Proceedings of the Royal Society of London 236, 397–410 (1956)

    Article  Google Scholar 

  16. Byon, S.M., Kim, S.I., Lee, Y.: A semi-analytical model for predicting the wear contour in rod rolling process. Journal of Materials Processing Technology 191, 306–309 (2007)

    Article  Google Scholar 

  17. Bowden, F.P., Tabor, D.: Friction, lubrication and wear: a survey of work during the last decade. British Journal of App. Physics 17, 1521–1544 (1966)

    Article  Google Scholar 

  18. John, S., Sikdar, S., Mukhopadhyay, A.: Roll wear prediction model for finishing stands of hot strip mill. Iron and Steel Making 33, 169–175 (2006)

    Article  Google Scholar 

  19. Franzke, M., Puchhala, S., Dackweiler, H.: Modeling of interaction effects between strip and roll during flat rolling process. In: NUMIFORM Conference Proceedings, vol. 908, pp. 1489–1494 (2007)

    Google Scholar 

  20. Franzke, M., Puchhala, S., Dackweiler, H.: Modeling of interaction effects between process and machine during flat rolling process. In: PMI Conference Proceedings (2008)

    Google Scholar 

  21. Tseng, A.A., Huang, C.H.: The estimation of surface thermal behavior of the working roll in hot rolling process. Heat and Mass Transfer 18, 1019–1031 (1995)

    Google Scholar 

  22. Tseng, A.: Thermal modeling of roll and strip interface in rolling process: part 1 – review. Numerical Heat Transfer 35, 115–135 (1999)

    Article  Google Scholar 

  23. Tseng, A.: Thermal modeling of roll and strip interface in rolling process: part 2 – review. Numerical Heat Transfer 35, 135–154 (1999)

    Article  Google Scholar 

  24. Mikic, B.B.: Thermal contact conductance: Theoretical considerations. International Heat Transfer 17, 205–214 (1974)

    Article  Google Scholar 

  25. Yovanovich, M.M., De Vaal, J., Hegazy, A.: A statistical model to predict thermal gap conductance between conforming rough surfaces. AIAA Paper No: 82-0888 (1998)

    Google Scholar 

  26. Colas, R., Torres, M.: Modeling heat conduction through an oxide layer during hot rolling of steel. ASME Manufacturing Science Engineering 68(2), 577–582 (1994)

    Google Scholar 

  27. Browne, K.M., Dryden, J., Assefpour, M.: Modeling scaling and de-scaling in hot strip mills. Recent Advances in Heat Transfer and Micro Structure Modeling for Metal Processing 67, 187–201 (1995)

    Google Scholar 

  28. Ranta, H., Larkoila, J., Korhonen, A.S.: A study of scale effects during accelerated cooling. In: Modeling of Metal Rolling Process Conference Proceedings, pp. 638–647 (1993)

    Google Scholar 

  29. Tseng, A.A.: A numerical heat transfer analysis of strip rolling. ASME Journal of Heat Transfer 106, 512–517 (1984)

    Article  Google Scholar 

  30. Sellars, C.M., McLaern, A.J.: Modeling distribution of microstructure during hot rolling of stainless steel. Materials Science and Technology 8, 1090–1095 (1975)

    Google Scholar 

  31. Militzer, M., Nakata, N.: Modeling of microstructure evolution during hot rolling of a 780 MPa high strength steel. ISIJ 45, 82–90 (2005)

    Article  Google Scholar 

  32. Tseng, A.A., Lin, F.H., Gunderia, A.S., Ni, D.S.: Roll cooling and its relationship to roll life. Metallurgical Transactions 20A, 2305–2320 (1988)

    Google Scholar 

  33. Sun, C.G., Hwang, S.M.: Prediction of roll thermal profile in hot strip rolling by the FE Method. ISIJ 40, 794–801 (2000)

    Article  Google Scholar 

  34. Azene, Y.T., Roy, R., Farrugia, D., Onisa, C., Trumann, M.H.: Work roll cooling sys-tem design optimization in presence of uncertainty. In: CIRP Design Conference Proceedings, pp. 57–65 (2009)

    Google Scholar 

  35. Partender, E., Mitter, S.: Ein Modell zur Prognose des Arbeitswalzenverschleiß der Breibandstraße in Linz. In: XXII Verformungskundlisches Kolloquium (2003)

    Google Scholar 

  36. Simulia, http://www.simulia.com/products/abaqus_fea.html

  37. Lasso GmBh, http://www.lasso.de/index.php?id=28

  38. GOM, Optische 3D-Koordinatenmessmaschine, http://www.gom.com/de/messsysteme/systemuebersicht/tritop.html

  39. Franzke, M.: Zielgrößenadaptierte Netzdiagnose und -generierung zur Anwendung der Finite Elemente Methode in der Umformtechnik. Dissertation, RWTH Aachen University (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Puchhala, S., Franzke, M., Hirt, G. (2013). Interaction Effects between Strip and Work Roll during Flat Rolling Process. In: Denkena, B., Hollmann, F. (eds) Process Machine Interactions. Lecture Notes in Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32448-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32448-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32447-5

  • Online ISBN: 978-3-642-32448-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics