Skip to main content

Analysis of Industrial Robot Structure and Milling Process Interaction for Path Manipulation

  • Conference paper

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Abstract

Industrial robots are used in a great variety of applications for handling, welding, assembling and milling operations. Especially for machining operations, industrial robots represent a cost-saving and flexible alternative compared to standard machine tools. Reduced pose and path accuracy, especially under process force load due to the high mechanical compliance, restrict the use of industrial robots for machining applications with high accuracy requirements. In this chapter, a method is presented to predict and compensate path deviation of robots resulting from process forces. A process force simulation based on a material removal calculation is presented. Furthermore, a rigid multi-body dynamic system’s model of the robot is extended by joint elasticities and tilting effects, which are modeled by spring-damper-models at actuated and additional virtual axes. By coupling the removal simulation with the robot model the interaction of the milling process with the robot structure can be analyzed by evaluating the path deviation and surface structure. With the knowledge of interaction along the milling path a general model-based path correction strategy is introduced to significantly improve accuracy in milling operations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abele, E., Bauer, J., Rothenbücher, S., Stelzer, M., Stryk, O.: Prediction of the Tool Displacement by Coupled Models of the Compliant Industrial Robot and the Milling Process. In: Conference on Process Machine Interaction, Hannover (2008)

    Google Scholar 

  2. Weigold, M.: Kompensation der Werkzeugabdrängung bei der spanenden Bearbeitung mit Industrierobotern. PhD Thesis TU Darmstadt (2008) ISBN 978-3-8322-7178-7

    Google Scholar 

  3. Altintas, Y.: Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations and CNC Design. Cambridge University Press (2000)

    Google Scholar 

  4. Craig, J.J.: Robotics. Addison-Wesley (1989)

    Google Scholar 

  5. Walker, M.W., Orin, D.E.: Efficient Dynamics Computer Simulation of Robotic Mechanisms. Journal of Dynamic Systems, Measurement, and Control 104, 205–211 (1982)

    Article  MATH  Google Scholar 

  6. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer (2008)

    Google Scholar 

  7. Höpler, R.: A unifying object-oriented methodology to consolidate multibody dynamics computations in robot control, PhD Thesis TU Darmstadt (2004)

    Google Scholar 

  8. Stelzer, M.: Forward Dynamics Simulation and Optimization of Walking Robots and Humans, PhD Thesis TU Darmstadt (2007)

    Google Scholar 

  9. Friedmann, M.: Simulation of Autonomous Robot Teams with Adaptable Levels of Abstraction, PhD Thesis TU Darmstadt (2009)

    Google Scholar 

  10. Walther, A., Griewank, A.: ADOL-C: A Package for the Automatic Differentiation of Algorithms Written in C/C++. Version 2.1.12, Documentation, https://projects.coin-or.org/ADOL-C

  11. von Stryk, O.: User’s Guide for DIRCOL (Version 2.1): a direct collocation method for the numerical solution of optimal control problems, TU Darmstadt (2000), http://www.sim.informatik.tu-darmstadt.de/sw/dircol

  12. Rehling, S.: Technologische Erweiterung der Simulation von NC-Fertigungsprozessen, PhD Thesis Universität Hannover (2009)

    Google Scholar 

  13. Surmann, T.: Geometrisch-physikalische Simulation der Prozessdynamik für das fünfachsige Fräsen von Freiformflächen, PhD Thesis TU Dortmund (2005)

    Google Scholar 

  14. Stautner, M.: Simulation und Optimierung der mehrachsigen Fräsbearbeitung, PhD Thesis TU Dortmund, München (2002) ISBN 3-8027-8732-3

    Google Scholar 

  15. Selle, J.: Technologiebasierte Fehlerkorrektur für das NC-Schlichtfräsen, PhD Thesis Universität Hannover (2005)

    Google Scholar 

  16. Weinert, K., Müller, H., Kreis, W., Surmann, T., Ayasse, J., Schüppstuhl, T., Kneupner, K.: Diskrete Werkstückmodellierung zur Simulation von Zerspanprozessen. In: Zeitschrift für wirtschaftlichen Fabrikbetrieb: ZWF, München, pp. 385–389 (2002) ISSN 0932-0482

    Google Scholar 

  17. KUKA Roboter GmbH. Data sheet KR 210-2. Gersthofen - Germany (July 2009), http://www.kuka-robotics.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bauer, J. et al. (2013). Analysis of Industrial Robot Structure and Milling Process Interaction for Path Manipulation. In: Denkena, B., Hollmann, F. (eds) Process Machine Interactions. Lecture Notes in Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32448-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32448-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32447-5

  • Online ISBN: 978-3-642-32448-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics