Skip to main content

Approaches and Controllers to Solving the Contention Problem for Packet Switching Networks: A Survey

  • Conference paper
Internet of Things

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 312))

Abstract

Optical packet switching (OPS) is a promising technology for future networks. However, optical packet contention is a major problem in an OPS network. Resolution and avoidance are two schemes that can deal with the contention problem. A resolution scheme, as a reactive approach, resolves collisions, while an avoidance scheme, as a proactive approach, tries to reduce the number of potential collision events. Therefore, many contention controllers using neural networks have been proposed to control the output contention problem within a learning approach. In this article, we survey the contention resolution and avoidance schemes proposed for OPS networks. We also review some contention controller propositions using neural network techniques for solving the output contention problem in OPS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heegaard, P.E., Sandmann, W.: Evaluating Differentiated Quality of Service Parameters in Optical Packet Switching. In: Koucheryavy, Y., Harju, J., Sayenko, A. (eds.) NEW2AN 2007. LNCS, vol. 4712, pp. 162–174. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Fei, X., Ben Yoo, S.J.: High-Capacity Multiservice Optical Label Switching For the Next-Generation Internet. IEEE Communication Magazine 42(5) (2004)

    Google Scholar 

  3. Cheyns, J.C., Develder, E., Van, B., Ackaert, A., Pickavet, M., Demeester, P.: Routing in an AWG-based Optical Packet Switch. Photonic Network Communicaions 5(1), 69–80 (2003), doi:10.1023/A:1021005913665

    Article  Google Scholar 

  4. Lévesque, M., Elbiaze, H., Wael, H.F.A.: Adaptive Threshold-based Decision for Efficient Hybrid Deflection and Retransmission Scheme in OBS Networks. In: 13th Conference on Optical Network Design and Modeling (ONDM 2009), Braunschweig, Germany, February 18-20 (2009)

    Google Scholar 

  5. Rostami, A., Chakraborty, S.S.: On Performance of Optical Buffers with Specific Number of Circulations. IEEE Photonics Technology Letters 17(7), 1570–1572 (2005)

    Article  Google Scholar 

  6. Rostami, A., Wolisz, A.: Modeling and Synthesis of Traffic in Optical Burst- Switched Networks. IEEE/OSA Journal of Lightwave Technology (JLT) 25(10), 2942–2952 (2007)

    Article  Google Scholar 

  7. Rostami, A., Wolisz, A., Feldmann, A.: Traffic analysis in optical burst switching networks: a trace-based case study. European Transactions on Telecommunications (ETT) 20(7), 633–649 (2009) (invited paper)

    Article  Google Scholar 

  8. Ghaffar, A., Oliver, W., Yang, W.: Contention Avoidance and Resolution Schemes in Bufferless All-Optical Packet-Switched Networks: A Survey. IEEE Communications Surveys & Tutorials 10(4) (Fourth Quarter, 2008)

    Google Scholar 

  9. Lévesque, M., Elbiaze, H.: Graphical Probabilistic Routing Model for OBS Networks with Realistic Traffic Scenario, Department of Computer Science, Quebec University (QC) Canada. In: IEEE GLOBECOM Proceedings (2009)

    Google Scholar 

  10. Yao, S., Biswanath, M., Ben Yoo, S.J., Sudhir, D.: A Unified Study of Contention-Resolution Schemes in Optical Packet-Switched Networks. Journal of Lightwave Technology 21(3) (March 2003)

    Google Scholar 

  11. Rarnaswami, R., Sivarajan, K.: Optical Networks: A practical perspective. Morgan Kaufmann (2001)

    Google Scholar 

  12. Rostami, A.: A dissertation about Traffic Shaping for Contention Control in OBS Networks. Presented to the Academic Faculty in Berlin (2010)

    Google Scholar 

  13. Eramo, V., Listanti, M., Pacifici, P.: A Comparison Study on the Number of Wavelength Converters Needed in Synchronous and Asynchronous All-Optical Switching Architectures. J. Lightwave Tech. 21(2) (2003)

    Google Scholar 

  14. Øverby, H.: Performance Modeling of Synchronous Bufferless OPS Networks. In: Proc. Int’l. Conf. Transparent Optical Networks, Wroclaw, Poland (July 2004)

    Google Scholar 

  15. Eramo, V., Listanti, M., Donato, M.D.: Performance Evaluation of a Bufferless Optical Packet Switch with Limited-Range Wavelength Converters. IEEE Photonic Technology Letters 16(2), 644–645 (2004)

    Article  Google Scholar 

  16. Almeida, R.C., Martins-Filho, J.F.: Limited-Range Wavelength Conversion Modeling for Asynchronous Optical Packet-Switched Networks. In: SBMO/IEEE MTT-S Int’l. Conf. Microwave and Optoelectronics, Kharkov, Ukraine (2005)

    Google Scholar 

  17. Eramo, V.: Performance of Scheduling Algorithms in Optical Packet Switches Equipped with Limited-Range Wavelength Converters. J. Optical Networking 4(12), 856–869 (2005)

    Article  Google Scholar 

  18. Lee, K.C., Li, V.O.K.: Optimization of a WDM Optical Packet Switch with Wavelength Converters. In: Proc. IEEE INFOCOM, Boston, Massachusetts (April 1995)

    Google Scholar 

  19. Eramo, V., Listanti, M., Spaziani, M.: Dimensioning Models in Optical Packet Switches Equipped with Shared Limited-Range Wavelength Converters. In: IEEE Globecom 2004, Dallas, USA (December 2004)

    Google Scholar 

  20. Danielsen, S.L., Hansen, P.B., Stubkjaer, K.E.: Wavelength Conversion in Optical Packet Switching. J. Lightwave Tech. 16(12) (December 1998)

    Google Scholar 

  21. Eramo, V., Listanti, M., Tarola, M.: Advantages of Input Wavelength Conversion in Optical Packet Switches. In: Proc. IEEE Globecom 2003, San Francisco, CA, USA (December 2003)

    Google Scholar 

  22. Callegati, F., Corazza, G., Raffaelli, C.: Exploitation of DWDM for optical Packet Switching with Quality of Service Guarantees. IEEE JSAC 20(1), 190–201 (2002)

    Google Scholar 

  23. Dogan, K., Akar, N.: A Performance Study of Limited-Range Partial Wavelength Conversion for Asynchronous Optical Packet/Burst Switching. In: Proc. IEEE ICC, Istanbul, Turkey (2006)

    Google Scholar 

  24. Tancevski, L., Yegnanarayanan, S., Castanon, G., Tamil, L., Masetti, F., Mc- Dermott, T.: Optical routing of asynchronous, variable length packets. IEEE Journal on Selected Areas in Communications 18(10), 2084–2093 (2000)

    Article  Google Scholar 

  25. Chia, M.C., Hunter, D.K., Andonovic, I., Ball, P., Wright, I., Ferguson, S.P., Guild, K.M., O’Mahony, M.J.: Packet loss and delay performance of feedback and feed-forward arrayed-waveguide gratings-based optical packet switches with WDM inputs-outputs. Journal of Lightwave Technology 19(9) (2001)

    Google Scholar 

  26. Yoo, M., Qiao, C., Dixit, S.: QoS performance of optical burst switching in IP-over-WDM networks. IEEE Journal on Selected Areas in Communications 18(10), 2062–2071 (2000)

    Article  Google Scholar 

  27. Chlamtac, I., Fumagalli, A., Suh, C.J.: Multibuffer delay line architectures for efficient contention resolution in optical switching nodes. IEEE Transactions on Communications 48(12), 2089–2098 (2000)

    Article  Google Scholar 

  28. Xu, L., Perros, H., Rouskas, G.: Techniques for Optical Packet Switching and Optical Burst Switching. IEEE Commun. Mag., 136–142 (January 2001)

    Google Scholar 

  29. El-Bawab, T.S., Shin, J.: Optical Packet Switching in Core Networks: Between Vision and Reality. IEEE Commun. Mag. 40(9), 60–65 (2002)

    Article  Google Scholar 

  30. Yao, S., Mukherjee, B., Dixit, A.: Advances in Photonic Packet Switching: an Overview. IEEE Commun. Mag. 38, 84–94 (2000)

    Google Scholar 

  31. Fayoumi, A.G., Jayasumana, A., Sauer, J.: Performance of Multihop Networks Using Optical Buffering and Deflection Routing. In: Proc. IEEE Conf. Local Computer Networks (LCN 2000), Tampa, Florida, USA (November 2000)

    Google Scholar 

  32. Pattavina, A.: Performance of Deflection Routing Algorithms in IP Optical Transport Networks. Computer Networks 50(2), 207–218 (2006)

    Article  MATH  Google Scholar 

  33. Modiano, E.: Random Algorithms for Scheduling Multicast Traffic in WDM Broadcast-and-Select Networks. IEEE/ACM Trans. on Networking 7(3), 425–434 (1999)

    Article  Google Scholar 

  34. Zhang, Q., et al.: Evaluation of Burst Retransmission in Optical Burst- Switched Networks. In: Proc. IEEE Broadnets 2005, Boston, USA (October 2005)

    Google Scholar 

  35. Rahbar, A.G.P., Yang, O.: Retransmission in Slotted Optical Networks. In: Proc. IEEE High Performance Switching and Routing (HPSR), Poznan, Poland, pp. 21–26 (June 2006)

    Google Scholar 

  36. Rahbar, A.G.P., Yang, O.: Prioritized Retransmission in Slotted All-Optical Packet-Switched Networks. In: High Performance Switching and Routing, Workshop (2006), doi:10.1109/HPSR.2006.1709675

    Google Scholar 

  37. Aracil, J., Callegati, F.: Enabling Optical Internet with Advanced Network Technologies. Springer (2009)

    Google Scholar 

  38. Li, Y., Xiao, G., Ghafouri-Shiraz, H.: On the Benefits of Multifiber Optical Packet Switch. Microwave and Optical Technology Letter 43(5), 376–378 (2004)

    Article  Google Scholar 

  39. Rahbar, A.G.P., Yang, O.: Contention Avoidance in Slotted Optical Networks. In: Proc. Int’l. Conf. Opt. Commun. Systems and Networks, SPIE Photonics North, Toronto, Canada, vol. 5970 (September 2005)

    Google Scholar 

  40. Rahbar, A.G.P., Yang, O.: Fiber-Channel Tradeoff for Reducing Collisions in Slotted Single-Hop Optical Packet-Switched (OPS) Networks. OSA J. Optical Networking 6(7) (July 2007)

    Google Scholar 

  41. Gerstel, O., Raza, H.: Merits of Low-Density WDM Line Systems for Long-Haul Networks. J. Lightwave Tech. 21, 2470–2475 (2003)

    Article  Google Scholar 

  42. Berry, R., Modiano, E.: Reducing Electronic Multiplexing Costs in SONET/WDM Rings with Dynamically Changing Traffic. Journal on Selected Areas in Communications 18(10) (October 2000)

    Google Scholar 

  43. Rahbar, A.G.P., Yang, O.: Reducing Loss Rate in Slotted Optical Networks: A Lower Bound Analysis. In: Proc. IEEE ICC 2006, Istanbul, Turkey (June 2006)

    Google Scholar 

  44. Timothy Brown, X.: Neural Networks for Switching. IEEE Communications Magazine (November 1989)

    Google Scholar 

  45. Binh, L.N., Chong, H.C.: A Neural-Network Contention Controller for Packet Switching Networks. IEEE Transactions on Neural Works 6(6) (November 1995)

    Google Scholar 

  46. Troudet, T.P., Walters, S.M.: Neural Network Architecture for Crossbar Switch Control. IEEE Transactions on Circuits and Systems 38(1) (January 1991)

    Google Scholar 

  47. Marrakchi, A., Troudet, T.: A Neural Net Arbitrator for Large Crossbar Packet-Switches. IEEE Transactions on Circuits and Systems 36(7) (July 1989)

    Google Scholar 

  48. Timothy Brown, X., Liu, K.H.: Neural Network Design of a Banyan Network Controller. IEEE Journal on Selected Areas in Communications 8 (October 1990)

    Google Scholar 

  49. Badi, A., Akodadi, K., Mestari, M., Namir, A.: A Neural-Network to Solving the Output Contention in Packet Switching Networks. Applied Mathematical Sciences 3(29), 1407–1451 (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kharroubi, F., Chen, L., Yu, J. (2012). Approaches and Controllers to Solving the Contention Problem for Packet Switching Networks: A Survey. In: Wang, Y., Zhang, X. (eds) Internet of Things. Communications in Computer and Information Science, vol 312. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32427-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32427-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32426-0

  • Online ISBN: 978-3-642-32427-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics