Advertisement

The Use of Design Specificity in Standardized Mean Difference for Analysis of High throughput RNA Interference Screens

  • Karol Kozak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7451)

Abstract

RNA interference (RNAi) high-content screening (HCS) enables massive parallel gene silencing and is increasingly being used to reveal novel connections between genes and disease-relevant phenotypes. The application of genome-scale RNAi relies on the development of high quality HCS assays. Strictly standardized mean difference (SSMD), introduced by Zhang et al. [1], provides a possibility for hit selection in HCS experiments. This method has relied on normal approximation, which works in the primary screens considering positive and negative controls. This paper describes a new extension of the SSMD, which integrates bioinformatics RNAi on-target analysis results for both the SSMD-based testing process and the use of SSMDas a ranking metric for hit selection by using additional controls generated from RNAi libraries.

Keywords

High content screening statistics bioinformatics RNAi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, X.H.D.: Genome-wide screens for effective siRNAs through assessing the size of siRNA effects. BMC Research Notes 1186(1), 33 (2008)CrossRefGoogle Scholar
  2. 2.
    Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C.: Potent and spe-cific genetic interference by double-stranded RNA in Caenorhabditiselegans. Nature 391, 806–811 (1998)CrossRefGoogle Scholar
  3. 3.
    Hannon, G.J.: RNA: A Guide to Gene Silencing. Cold Spring Harbor Laboratory Press, New York (2003)Google Scholar
  4. 4.
    Kurreck, J.: RNA interference: perspectives and caveats. RNA Interference Gene Silencing 1, 50–51 (2005)Google Scholar
  5. 5.
    Mahanthappa, N.: Translating RNA interference into therapies for human diseases. Pharmacogenomics 6, 879–883 (2005)CrossRefGoogle Scholar
  6. 6.
    Whelan, J.: First clinical data on RNAi. Drug Discovery Today 10, 1014–1015 (2005)CrossRefGoogle Scholar
  7. 7.
    Nature News, Silent running: the race to the clinic. Nature, 442, 614–615 (2006)Google Scholar
  8. 8.
    Zuck, P., Murray, E.M., Stec, E., Grobler, J.A., Simon, A.J., Strulovici, B., et al.: A cell-based β-lactamase reporter gene assay for the identification of inhibitors of hepatitis C virus replication. Anal. Biochem. 334, 344–355 (2004)CrossRefGoogle Scholar
  9. 9.
    MacKeigan, J.P., Murphy, L.O., Blenis, J.: Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat. Cell. Biol. 7, 591–600 (2005)CrossRefGoogle Scholar
  10. 10.
    Nybakken, K., Vokes, S., Lin, T.Y., McMahon, A.P., Perrimon, N.A.: Genome-wide RNA in-terference screen in Drosophila melanogaster cells for new components of the HH signal-ling pathway. Nat. Genet. 37, 1323–1332 (2005)CrossRefGoogle Scholar
  11. 11.
    Pelkmans, L., Fava, E., Grabner, H., Hannus, M., Habermann, B., Krausz, E., et al.: Genome-wide analysis of human kinases in clathrinandcaveolae/raft-mediated endocytosis. Nature 436, 78–86 (2005)CrossRefGoogle Scholar
  12. 12.
    Amarzguioui, M., Prydz, H.: An algorithm for selection of functional siRNA sequences. Biochem. Biophys. Res. Commun. 316, 1050–1058 (2004)CrossRefGoogle Scholar
  13. 13.
    Chiu, Y.L., Rana, T.M.: RNAi in human cells: basic structural and functional features of small interfering RNA. Mol. Cell. 10, 549–561 (2002)CrossRefGoogle Scholar
  14. 14.
    Khvorova, A., Reynolds, A., Jayasena, S.D.: Functional siRNAs and miRNAs exhibit strand bias. Cell. 115, 209–216 (2003)CrossRefGoogle Scholar
  15. 15.
    Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W.S., Khvorova, A.: Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326–330 (2004)CrossRefGoogle Scholar
  16. 16.
    Schwarz, D.S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., Zamore, P.D.: Asymmetry in the as-sembly of the RNAi enzyme complex. Cell. 115, 199–208 (2003)CrossRefGoogle Scholar
  17. 17.
    Ui-Tei, K., Naito, Y., Takahashi, F., Haraguchi, T., Ohki-Hamazaki, H., Juni, A., Ueda, R., Saigo, K.: Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 32, 936–948 (2004)CrossRefGoogle Scholar
  18. 18.
    Shah, J.K., Garner, H.R., White, M.A., Shames, D.S., Minna, J.D.: sIR: siRNA Information Resource, a web-based tool for siRNA sequence design and analysis and an open access siRNA database. BMC Bioinformatics 8, 178 (2007)CrossRefGoogle Scholar
  19. 19.
    Wang, X., Varma, R.K., Beauchamp, L., Magdaleno, S., Sendera, T.J.: Selection of hyper-functionalsiRNAs with improved potency and specificity. Nucleic Acids Res. 37, e152 (2009)CrossRefGoogle Scholar
  20. 20.
    Zhang, J.H., Chung, T.D.Y., Oldenburg, K.: A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73 (1999)CrossRefGoogle Scholar
  21. 21.
    Zhang, X.H.D., Lacson, R., Yang, R., Marine, S.D., McCampbell, T.D.M., Hare, T.R., Kajdas, J., Berger, J.P., Holder, D.J., Heyse, J.F., Ferrer, M.: The use of SSMD-based false discovery and false non-discovery rates in genome-scale RNAi screens. Journal of Biomolecular Screening 15, 1123–1131 (2010)CrossRefGoogle Scholar
  22. 22.
    Zhang, X.D.: A pair of new statistical parameters for quality control in RNA interference high-throughput screening assays. Genomics 89, 552–561 (2007)CrossRefGoogle Scholar
  23. 23.
    Zhang, X.D.: Novel analytic criteria and effective plate designs for quality control in genome-wide RNAi screens. Journal of Biomolecular Screening 13, 363–377 (2008)CrossRefGoogle Scholar
  24. 24.
    Zhang, X.D., Espeseth, A.S., Johnson, E.N., Chin, J., Gates, A., Mitnaul, L.J., Marine, S.D., Tian, J., Stec, E.M., Kunapuli, P., Holder, D.J., Heyse, J.F., Strulovici, B., Ferrer, M.: Integrating experimental and analytic approaches to improve data quality in genome-wide screens. Journal of Biomolecular Screening 13, 378–389 (2008)CrossRefGoogle Scholar
  25. 25.
    Zhang, X.D.: A new method with flexible and balanced control of false negatives and false positives for hit selection in RNA interference high-throughput screening assays. Journal of Biomolecular Screening 12, 645–655 (2007)CrossRefGoogle Scholar
  26. 26.
    Zhang, X.D., Ferrer, M., Espeseth, A.S., Marine, S.D., Stec, E.M., Crackower, M.A., Holder, D.J., Heyse, J.F., Strulovici, B.: The use of strictly standardized mean difference for hit selection in primary RNA interference high-throughput screening experiments. Journal of Biomolecular Screening 12, 497–509 (2007)CrossRefGoogle Scholar
  27. 27.
    Mazur, S., Csucs, G., Kozak, K.: Z’ Factor including siRNA design quality parameter in RNAi screening experiments. RNA Biology (in press, 2012)Google Scholar
  28. 28.
    Semizarov, D., Frost, L., Sarthy, A., Kroeger, P.A., Halbert, D.N., Fesik, S.W.: Specificity of short interfering rna determined through gene expression signatures. Proc. Natl. Acad. Sci. USA 100(11), 6347–6352 (2003)CrossRefGoogle Scholar
  29. 29.
    Haley, B., Zamore, P.D.: Kinetic analysis of the rnai enzyme complex. Nat. Struct. Mol. Biol. 11, 599–606 (2004)CrossRefGoogle Scholar
  30. 30.
    Elbashir, S.M., Martinez, J., Patkaniowska, A., Lendeckel, W., Tuschl, T.: Functional anat-omy of sirnas for mediating efficient rnai in drosophila melanogaster embryo lysate. EMBO Journal 20, 6877–6888 (2001)CrossRefGoogle Scholar
  31. 31.
    Pruitt, K.D., Tatusova, T., Maglott, D.R.: NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35, D61–D65 (2007)CrossRefGoogle Scholar
  32. 32.
    Wild, T., Horvath, P., Wyler, E., Widmann, B., Badertscher, L., Zemp, I., Kozak, K., Csusc, G., Lund, E., Kutay, U.: A protein inventory of human ribosome biogenesis reveals an essential function of Exportin 5 in 60S subunit export. PLoS. Biol. 8, e1000522 (2010)CrossRefGoogle Scholar
  33. 33.
    HCDC web page, bioinformatics module, http://hcdc.ethz.ch/index.php?view=article&id=25
  34. 34.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Karol Kozak
    • 1
  1. 1.LMSCETH ZurichSwitzerland

Personalised recommendations