Argumentation to Represent and Reason over Biological Systems

  • Adam Wyner
  • Luke Riley
  • Robert Hoehndorf
  • Samuel Croset
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7451)


In systems biology, networks represent components of biological systems and their interactions. It is a challenge to efficiently represent, integrate and analyse the wealth of information that is now being created in biology, where issues concerning consistency arise. As well, the information offers novel methods to explain and explore biological phenomena. To represent and reason with inconsistency as well as provide explanation, we represent a fragment of a biological system and its interactions in terms of a computational model of argument and argumentation schemes. Process pathways are represented in terms of an argumentation scheme, then abstracted into a computational model for evaluation, yielding sets of ‘consistent’ arguments that represent compatible biological processes. From the arguments, we can extract the corresponding processes. We show how the analysis supports explanation and systematic exploration in a biology network.


argumentation systems biology computational methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atkinson, K., Bench-Capon, T., Cartwright, D., Wyner, A.: Semantic models for policy deliberation. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Law, ICAIL 2011, Pittsburgh, PA, USA, pp. 81–90 (2011)Google Scholar
  2. 2.
    Atkinson, K., Bench-Capon, T.J.M.: Abstract Argumentation Scheme Frameworks. In: Dochev, D., Pistore, M., Traverso, P. (eds.) AIMSA 2008. LNCS (LNAI), vol. 5253, pp. 220–234. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nature Reviews Genetics 5(2), 101–113 (2004)CrossRefGoogle Scholar
  4. 4.
    Barabási, A.L.L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nature Reviews. Genetics 12(1), 56–68 (2011)CrossRefGoogle Scholar
  5. 5.
    Black, E., Atkinson, K.: Choosing persuasive arguments for action. In: Proceedings of the Tenth International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2011 (2011)Google Scholar
  6. 6.
    Cerami, E.G., Gross, B.E., Demir, E., Rodchenkov, I., Babur, O., Anwar, N., Schultz, N., Bader, G.D., Sander, C.: Pathway commons, a web resource for biological pathway data. Nucleic Acids Research 39(suppl. 1), D685–D690 (2011)CrossRefGoogle Scholar
  7. 7.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–358 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Dunne, P., Wooldridge, M.: Complexity of abstract argumentation. In: Rahwan, I., Simari, G. (eds.) Argumentation in Artificial Intelligence, pp. 85–104. Springer (2009)Google Scholar
  9. 9.
    Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argumentation frameworks. Argument and Computation 1(2), 147–177 (2008)CrossRefGoogle Scholar
  10. 10.
    Hermjakob, H., Montecchi Palazzi, L., Lewington, C., Mudali, S., Kerrien, S., Orchard, S., Vingron, M., Roechert, B., Roepstorff, P., Valencia, A., Margalit, H., Armstrong, J., Bairoch, A., Cesareni, G., Sherman, D., Apweiler, R.: Intact: an open source molecular interaction database. Nucleic Acids Research 32(suppl. 1), D452–D455 (2004)CrossRefGoogle Scholar
  11. 11.
    Hidalgo, C.A., Blumm, N., Barabsi, A.L., Christakis, N.A.: A dynamic network approach for the study of human phenotypes. PLoS Comput. Biol. 5(4), e1000353 (2009)CrossRefGoogle Scholar
  12. 12.
    Jeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001)CrossRefGoogle Scholar
  13. 13.
    Kitano, H.: Computational systems biology. Nature 420(6912), 206–210 (2002)CrossRefGoogle Scholar
  14. 14.
    Kitano, H.: Systems Biology: A Brief Overview. Science 295(5560), 1662–1664 (2002)CrossRefGoogle Scholar
  15. 15.
    Kuhn, M., Campillos, M., Letunic, I., Jensen, L.J., Bork, P.: A side effect resource to capture phenotypic effects of drugs. Molecular Systems Biology 6(1) (January 2010)Google Scholar
  16. 16.
    McLeod, K., Ferguson, G., Burger, A.: Using argumentation to resolve conflict in biological databases. In: Green, N., Grasso, F., Kibble, R., Reed, C. (eds.) Proceedings of Computational Models of Natural Argument (CMNA), vol. 9, pp. 15–23 (2009)Google Scholar
  17. 17.
    McLeod, K., Ferguson, G., Burger, A.: Argudas: arguing with gene expression information. In: Paschke, A., Burger, A., Splendiani, A., Marshall, M.S., Romano, P. (eds.) Proceedings of the 3rd International Workshop on Semantic Web Applications and Tools for the Life Sciences (December 2010)Google Scholar
  18. 18.
    McLeod, K., Burger, A.: Towards the use of argumentation in bioinformatics: a gene expression case study. In: ISMB, pp. 304–312 (2008)Google Scholar
  19. 19.
    Prakken, H.: An abstract framework for argumentation with structured arguments. Argument and Computation 1(2), 93–124 (2010)CrossRefGoogle Scholar
  20. 20.
    Walton, D.: Argumentation Schemes for Presumptive Reasoning. Erlbaum, Mahwah (1996)Google Scholar
  21. 21.
    Walton, D., Reed, C., Macagno, F.: Argumentation Schemes. Cambridge University Press (2008)Google Scholar
  22. 22.
    Wooldridge, M., van der Hoek, W.: On obligations and normative ability: Towards a logical analysis of the social contract. Journal of Applied Logic 3(3-4), 396–420 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Wyner, A., Bench-Capon, T., Atkinson, K.: Formalising argumentation about legal cases. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Law, ICAIL 2011, Pittsburgh, PA, USA, pp. 1–10 (2011)Google Scholar
  24. 24.
    Zhao, J., Gong, A.Y., Zhou, R., Liu, J., Eischeid, A.N., Chen, X.M.: Downregulation of pcaf by miR-181a/b provides feedback regulation to tnv-α-induced transcription of proinflammatory genes in liver epithelial cells. The Journal of Immunology (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Adam Wyner
    • 1
  • Luke Riley
    • 1
  • Robert Hoehndorf
    • 2
  • Samuel Croset
    • 3
  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK
  2. 2.Department of GeneticsUniversity of CambridgeCambridgeUK
  3. 3.European Bioinfomatics InstituteCambridgeUK

Personalised recommendations