Skip to main content

Binary Image Comparison with Use of Tree-Based Approach

  • Conference paper
Image Processing and Communications Challenges 4

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 184))

Summary

In this paper, we propose a tree-based approach to represent and compare binary images. Upon the images trees are created. The key observation is that from similar images similar trees are produced. On the other hand, upon dissimilar images unlike trees are constructed. Moreover, the degree of dissimilarity between images is proportional to the degree of dissimilarity between the trees. Hence, it is possible to express the difference between two binary images as the difference between the trees. The paper presents algorithms of creating and comparing trees as well as results, which confirm usefulness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mpeg7 ce shape-1 part b, http://imageprocessingplace.com/downloads_V3/root_downloads/image_databases/MPEG7_CE-Shape-1_Part_B.zip

  2. Ankerst, M., Kriegel, H.P., Seidl, T.: A multistep approach for shape similarity search in image databases. IEEE Transactions on Knowledge and Data Engineering 10(6), 996–1004 (1998), doi:10.1109/69.738362

    Article  Google Scholar 

  3. Baddeley, A.J.: An error metric for binary images. In: Proceedings of International Workshop on Robust Computer Vision: Quality of Vision Algorithms, pp. 59–78. Wichmann Verlag (1992)

    Google Scholar 

  4. Baudrier, E., Nicolier, F., Millon, G., Ruan, S.: Binary-image comparison with local-dissimilarity quantification. Pattern Recognition 41(5), 1461–1478 (2008), doi:10.1016/j.patcog.2007.07.011

    Article  MATH  Google Scholar 

  5. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002), doi:10.1109/34.993558

    Article  Google Scholar 

  6. Grigorescu, C., Petkov, N.: Distance sets for shape filters and shape recognition. IEEE Transactions on Image Processing 12(10), 1274–1286 (2003), doi:10.1109/TIP.2003.816010

    Article  MathSciNet  Google Scholar 

  7. Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(9), 850–863 (1993), doi:10.1109/34.232073

    Article  Google Scholar 

  8. Jia, L., Kitchen, L.: Object-based image similarity computation using inductive learning of contour-segment relations. IEEE Transactions on Image Processing 9(1), 80–87 (2000), doi:10.1109/83.817600

    Article  Google Scholar 

  9. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Probability and Statistics. Wiley–Interscience, New York (1990)

    Book  Google Scholar 

  10. Latecki, L., Lakamper, R.: Shape similarity measure based on correspondence of visual parts. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1185–1190 (2000), doi:10.1109/34.879802

    Article  Google Scholar 

  11. Ling, H., Jacobs, D.: Shape classification using the inner-distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(2), 286–299 (2007), doi:10.1109/TPAMI.2007.41

    Article  Google Scholar 

  12. Mokhtarian, F., Abbasi, S., Kittler, J.: Efficient and robust retrieval by shape content through curvature scale space. Series on Software Engineering and Knowledge Engineering 8, 51–58 (1997)

    Google Scholar 

  13. Paumard, J.: Robust comparison of binary images. Pattern Recognition Letters 18(10), 1057–1063 (1997), doi:10.1016/S0167-8655(97)80002-5

    Article  Google Scholar 

  14. Prieto, M., Allen, A.: A similarity metric for edge images. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(10), 1265–1273 (2003), doi:10.1109/TPAMI.2003.1233900

    Article  Google Scholar 

  15. Sebastian, T., Klein, P., Kimia, B.: On aligning curves. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(1), 116–125 (2003), doi:10.1109/TPAMI.2003.1159951

    Article  Google Scholar 

  16. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)

    MATH  Google Scholar 

  17. Veltkamp, R.: Shape matching: similarity measures and algorithms. In: International Conference on Shape Modeling and Applications, SMI 2001, pp. 188–197 (2001), doi:10.1109/SMA.2001.923389

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartłomiej Zieliński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zieliński, B., Iwanowski, M. (2013). Binary Image Comparison with Use of Tree-Based Approach. In: Choraś, R. (eds) Image Processing and Communications Challenges 4. Advances in Intelligent Systems and Computing, vol 184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32384-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32384-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32383-6

  • Online ISBN: 978-3-642-32384-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics