Skip to main content

The iCub Platform: A Tool for Studying Intrinsically Motivated Learning

  • Chapter
  • First Online:
Intrinsically Motivated Learning in Natural and Artificial Systems

Abstract

Intrinsically motivated robots are machines designed to operate for long periods of time, performing tasks for which they have not been programmed. These robots make extensive use of explorative, often unstructured actions in search for opportunities to learn and extract information from the environment. Research in this field faces challenges that need advances not only on the algorithms but also on the experimental platforms. The iCub is a humanoid platform that was designed to support research in cognitive systems. We review in this chapter the chief characteristics of the iCub robot, devoting particular attention to those aspects that make the platform particularly suitable to the study of intrinsically motivated learning. We provide details on the software architecture, the mechanical design, and the sensory system. We report examples of experiments and software modules to show how the robot can be programmed to obtain complex behaviors involving the interaction with the environment. The goal of this chapter is to illustrate the potential impact of the iCub on the scientific community at large and, in particular, on the field of intrinsically motivated learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The RobotCub project was funded by the European Commission, Project IST-004370, under Strategic Objective 2.3.2.4: Cognitive Systems.

  2. 2.

    The iCub software and hardware are licensed under the GNU General Public License (GPL) and GNU Free Documentation License (FDL), respectively.

  3. 3.

    In position control, potentially large forces are produced to achieve a desired position. This is dangerous when unexpected interaction with the environment occurs because the robot is learning, exploring, or interacting with humans. In this scenario, as explained in Sect. 4.1, force control is a preferable approach.

  4. 4.

    Point Grey Research, Inc.: http://www.ptgray.com.

  5. 5.

    Xsens 3D Motion Tracking: http://www.xsens.com.

  6. 6.

    ATI Industrial Automation: http://www.ati-ia.com.

  7. 7.

    Open Computer Vision Library: http://sourceforge.net/projects/opencvlibrary.

  8. 8.

    Open Robot Control Software: http://www.orocos.org.

  9. 9.

    Robot Operating System: http://www.ros.org.

  10. 10.

    Kitware, Cross Platform Make: http://www.cmake.org.

  11. 11.

    Simplified Wrapper and Interface Generator: http://www.swig.org.

  12. 12.

    The ADAPTIVE Communication Environment: http://www.cs.wustl.edu/\schmidt/ACE.htm.

  13. 13.

    Open Dynamics Engine: http://www.ode.org.

  14. 14.

    iCub software documentation: http://www.icub.org

  15. 15.

    An impedance controller drives the arm by simulating virtual springs attached between the arm and a desired equilibrium point.

  16. 16.

    graspDetector: see iCub Software Documentation, http://www.icub.org

  17. 17.

    iKinArmCtrlF: see iCub software documentation: http://www.icub.org

  18. 18.

    In doing so, we ensure that this constraint receives higher priority in the minimization (Pattacini et al. 2010). This part of the task is fulfilled with a precision up to the value of the constant ε that is selected to be practically negligible (in our case 10 − 6 m).

  19. 19.

    A complete list of available methods is available on the documentation page of the ICartesianControl interface in the YARP software documentation: http://www.yarp.it

References

  1. Barto, A., Singh, S., Chentanez, N.: Intrinsically Motivated Learning of Hierarchical Collections of Skills. In: International Conference on Developmental and Learning, La Jolla, California, October 20–22 (2004)

    Google Scholar 

  2. Bushnell, E.W., Boudreau, J.P.: Motor development and the mind: The potential role of motor abilities as a determinant of aspects of perceptual development. Child Dev. 64(4), 1005–1021 (1993)

    Article  Google Scholar 

  3. Ciliberto, C., Smeraldi, F., Natale, L., Metta, G.: Online multiple instance learning applied to hand detection in a humanoid robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, California, USA (2011)

    Google Scholar 

  4. De Santis, A., Siciliano, B., De Luca, A., Bicchi, A.: An atlas of physical human–robot interaction. Mech. Mach. Theory 43(3), 253–270 (2008)

    Article  Google Scholar 

  5. Dégallier, S., Righetti, L., Gay, S., Ijspeert, A.: Towards simple control for complex, autonomous robotic applications: Combining discrete and rhythmic motor primitives. Auton. Robots 31(2), 155–181 (2011)

    Article  Google Scholar 

  6. Del Prete, A., Denei, S., Natale, L., F., M., Nori, F., Cannata, G., Metta, G.: Skin spatial calibration using force/torque measurements. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, California, USA (2011)

    Google Scholar 

  7. Fitzpatrick, P., Metta, G., Natale, L.: Towards long-lived robot genes. Robot. Auton. Syst. 56(1), 29–45 (2008)

    Article  Google Scholar 

  8. Flash, T., Hogan, N.: The coordination of arm movements: An experimentally confirmed mathematical model. J. Neurosci. 5(3), 1688–1703 (1985)

    Article  Google Scholar 

  9. Fumagalli, M., Nori, F., Randazzo, M., Natale, L., Giorgio, M., Giulio, S.: Exploiting proximal F/T measurements for the iCub torque control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan (2010)

    Google Scholar 

  10. Gijsberts, A., Metta, G.: Incremental learning of robot dynamics using random features. In: IEEE International Conference on Robotics and Automation, Shanghai, China (2011)

    Google Scholar 

  11. Haddadin, S., Albu-Schaffer, A., Hirzinger, G.: Requirements for safe robots: Measurements, analysis and new insights. Int. J. Robot. Res. 28(11–12), 1507–1527 (2009)

    Article  Google Scholar 

  12. Hersch, M., Billard, A.: Reaching with multi-referential dynamical systems. Auton. Robots 25 (1–2), 71–83 (2008)

    Article  Google Scholar 

  13. Hörnstein, J., Lopes, M., Santos-Victor, J.: Sound localization for humanoid robots—building audio-motor maps based on the HRTF. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1170–1176, Beijing, China (2006)

    Google Scholar 

  14. Kaplan, F., Oudeyer, P.-Y.: Intrinsically motivated machines. In: Lungarella, M., Iida, F., Bongard, J., Pfeifer, R. (eds.) 50 Years of AI, pp. 303–314. Lecture Notes in Computer Science, vol. 4850. Springer, Berlin (2007)

    Google Scholar 

  15. Lungarella, M., Metta, G., Pfeifer, R., Sandini, G.: Developmental robotics: A survey. Connect. Sci. 15(4), 151–190 (2003)

    Article  Google Scholar 

  16. Metta, G., Sandini, G., Vernon, D., Natale, L., Nori, F.: The iCub humanoid robot: An open platform for research in embodied cognition. In: PerMIS: Performance Metrics for Intelligent Systems Workshop, Washington DC, USA, August 19–21 (2008)

    Google Scholar 

  17. Mirolli, M., Baldassarre, G.: Functions and mechanisms of intrinsic motivations. In: Baldassarre, G., Mirolli, M. (eds.) Intrinsically Motivated Learning in Natural and Artificial Systems. Springer, Berlin (2012, this volume)

    Google Scholar 

  18. Montesano, L., Lopes, M., Bernardino, A., Santos-Victor, J.: Learning object affordances: From sensory–motor coordination to imitation. IEEE Trans. Robot. 24(1), 15–26 (2008) (Special Issue on Biorobotics)

    Article  Google Scholar 

  19. Murray, R.M., Sastry, S.S., Zexiang, L.: A Mathematical Introduction to Robotic Manipulation. CRC, Boca Raton (1994)

    MATH  Google Scholar 

  20. Natale, L.: A study on YARP performance. Technical report, Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia (2009)

    Google Scholar 

  21. Needham, A., Barret, T., Peterman, K.: A pick-me-up for infants exploratory skills: Early simulated experiences reaching for objects using sticky mittens enhances young infants object exploration skills. Infant Behav. Dev. 25(3), 279–295 (2002)

    Article  Google Scholar 

  22. Oudeyer, P.-Y. Kaplan, F.: What is intrinsic motivation? A typology of computational approaches. Front. Neurorobot. 1(6), doi:10.3389/neuro.12.006.2007 (2007)

    Google Scholar 

  23. Parmiggiani, A., Randazzo, M., Natale, L., Metta, G., Sandini, G.: Joint torque sensing for the upper-body of the iCub humanoid robot. In: IEEE-RAS International Conference on Humanoid Robots, Paris, France (2009)

    Google Scholar 

  24. Pattacini, U., Nori, F., Natale, L., Metta, G., Sandini, G.: An experimental evaluation of a novel minimum-jerk Cartesian controller for humanoid robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan (2010)

    Google Scholar 

  25. Peniak, M., Marocco, D., Tani, J., Yamashita, Y., Fischer, K., Cangelosi, A.: Multiple time scales recurrent neural network for complex action acquisition. In: International Joint Conference on Development and Learning and Epigenetic Robotics (ICDL-EPIROB), Frankfurt am Main, Germany (2011a)

    Google Scholar 

  26. Peniak, M., Morse, A., Larcombe, C., Ramirez-Contla, S., Cangelosi A.: Aquila: An open-source gpu-accelerated toolkit for cognitive and neuro-robotics research. In: International Joint Conference on Neural Networks (IJCNN), San Jose, California (2011b)

    Google Scholar 

  27. Ruesch, J., Lopes, M., Bernardino, A., Hörnstein, J., Santos-Victor, J., Pfeifer, R.: Multimodal saliency-based bottom-up attention a framework for the humanoid robot iCub. In: IEEE—International Conference on Robotics and Automation, Pasadena, California (2008)

    Google Scholar 

  28. Saegusa, R., Natale, L., Metta, G., Sandini, G.: Cognitive robotics—active perception of the self and others. In: 4th International Conference on Human System Interaction, Yokohama, Japan (2011)

    Google Scholar 

  29. Santos, J., Bernardino, A., Santos-Victor, J.: Sensor-based self-calibration of the iCub’s head. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan (2010)

    Google Scholar 

  30. Sauser, E., Argall, B.D., Metta, G., Billard, A.: Iterative learning of grasp adaptation through human corrections. In: Eric L. Sauser, Brenna D. Argall, Giorgio Metta, Aude G. Billard (eds.), Robotics and Autonomous Systems, Elsevier 60(1), 55–71 (2012)

    Google Scholar 

  31. Schiavi, R., Flacco, F., Bicchi, A.: Integration of active and passive compliance control for safe human–robot coexistence. In: IEEE International Conference on Robotics and Automation, Kobe, Japan (2009)

    Google Scholar 

  32. Schmitz, A., Maggiali, M., Natale, L., Bonino, B., Metta, G.: A tactile sensor for the fingertips of the humanoid robot iCub. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan (2010)

    Google Scholar 

  33. Schmitz, A., Maggiali, M., Randazzo, M., Natale, L., Metta, G.: A prototype fingertip with high spatial resolution pressure sensing for the robot iCub. In: IEEE-RAS International Conference on Humanoid Robots, Daejeon, Republic of Korea (2008)

    Google Scholar 

  34. Schmitz, A., Maiolino, P., Maggiali, M., Natale, L., Cannata, G., Metta, G.: Methods and technologies for the implementation of large scale robot tactile sensors. IEEE Trans. Robot. 23(3), 389–400 (2011) (Special Issue on Robot Sense of Touch)

    Article  Google Scholar 

  35. Sciavicco, L., Siciliano, B.: Modelling and control of robot manipulators. In: Advanced Textbooks in Control and Signal Processing, 2nd edn. Springer-Verlag London Limited 2000, printed in Great Britain (2005)

    Google Scholar 

  36. Tikhanoff, V., Fitzpatrick, P., Metta, G., Natale, L., Nori, F., Cangelosi, A.: An open source simulator for cognitive robotics research: The prototype of the iCub humanoid robot simulator. In: Workshop on Performance Metrics for Intelligent Systems, Washington, D.C (2008)

    Google Scholar 

  37. Tsagarakis, N., Becchi, F., Righetti, L., Ijspeert, A., Caldwell, D.: Lower body realization of the baby humanoid—iCub. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, California (2007)

    Google Scholar 

  38. Vernon, D., von Hofsten, C., Fadiga, L.: A roadmap for cognitive development in humanoid robots. In: Cognitive Systems Monographs (COSMOS), vol. 11. Springer, Berlin (2011)

    Google Scholar 

  39. von Hofsten, C.: An action perspective on motor development. Trends Cogn. Sci. 8(6), 266–272 (2004)

    Article  Google Scholar 

  40. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  Google Scholar 

  41. Weng, J., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M., Thelen, E.: Autonomous mental development by robots and animals. Science 291(5504), 599–600 (2000)

    Article  Google Scholar 

  42. Zinn, M., Roth, B., Khatib, O., Salisbury, J.K.: A new actuation approach for human friendly robot design. Int. J. Robot. Res. 23(4–5), 379–398 (2004)

    Article  Google Scholar 

  43. Zlatev, J., Balkenius, C.: Why “epigenetic robotics”? In: Balkenius, C., Zlatev, J., Kozima, H., Dautenhahn, K., Breazeal, C. (eds.) International Workshop of Epigenetic Robotics, vol. 85, pp. 1–4. Lund University Cognitive Studies, Lund (2001)

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreements No 231500 (ROBOSKIN), No 214668 (ITALK), and No 215805 (CHRIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Natale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Natale, L. et al. (2013). The iCub Platform: A Tool for Studying Intrinsically Motivated Learning. In: Baldassarre, G., Mirolli, M. (eds) Intrinsically Motivated Learning in Natural and Artificial Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32375-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32375-1_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32374-4

  • Online ISBN: 978-3-642-32375-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics