Skip to main content

Pharmaceuticals

  • Chapter
  • First Online:
Applied Cross-Coupling Reactions

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 80))

Abstract

This chapter describes the design and development of biologically active compounds using cross-coupling reactions as key steps. These biologically active compounds are of both academic and industrial importance. Drug candidates can be prepared from easily available substrates in a few steps through cross-coupling—underscoring the versatility, effectiveness, functional group tolerance, and mild reaction conditions of the cross-coupling methods. Due to these advantages, palladium-catalyzed cross-coupling reactions are being utilized in the industrial production of pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li JJ, Gribble GW (2000) Palladium in heterocyclic chemistry. A Guide for the Synthetic Chemist. Pergamon Amsterdam, The Netherlands

    Google Scholar 

  2. Miyaura N (2001) Organoboron compounds. Top Curr Chem 219:11–59

    Article  Google Scholar 

  3. Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M (2002) Aryl—aryl bond formation one century after the discovery of the Ullmann reaction. Chem Rev 102:1359–1470

    Article  CAS  Google Scholar 

  4. Littke A, Fu GC (2002) Palladium-catalyzed coupling reactions of aryl chlorides. Angew Chem Int Ed 41:4176–4211

    Article  CAS  Google Scholar 

  5. King AO, Yasuda N (2004) Palladium-catalyzed cross-coupling reactions in the synthesis of pharmaceuticals. Topics Organomet Chem 6:205–245

    CAS  Google Scholar 

  6. Nicolaou KC, Bulger PG, Sarlah D (2005) Palladium-catalyzed cross-coupling reactions in total synthesis. Angew Chem Int Ed 44:4442–4489

    Article  CAS  Google Scholar 

  7. Marion N, Nolan SP (2008) Well-defined N-heterocyclic carbenes—palladium (II) precatalysts for cross-coupling reactions. Acc Chem Res 41:1440–1449

    Article  CAS  Google Scholar 

  8. Fu GC (2008) The development of versatile methods for palladium-catalyzed coupling reactions of aryl electrophiles through the use of P(t-Bu)3 and PCy3 as ligands. Acc Chem Res 41:1555–1564

    Article  CAS  Google Scholar 

  9. Cahiez G, Moyeux A (2010) Cobalt-catalyzed cross-coupling reactions. Chem Rev 110:1435–1462

    Article  CAS  Google Scholar 

  10. Vo TC, Mitchell TA, Bode JW (2011) Expanded substrate scope and improved reactivity of ether-forming cross-coupling reactions of organotrifluoroborates and acetals. J Am Chem Soc 133:14082–14089

    Article  CAS  Google Scholar 

  11. Bai Y, Zeng J, Cai S, Liu X (2011) Palladium-catalyzed direct cross-coupling reaction of glycals with activated alkenes. Org Lett 13:4394–4397

    Article  CAS  Google Scholar 

  12. Naso F, Babudr F, Farinola GM (1999) Organometallic chemistry directed towards the synthesis of electroactive materials: stereoselective routes to extended polyconjugated systems. Pure Appl Chem 71:1485–1492

    Article  CAS  Google Scholar 

  13. Schlummer B, Scholz U (2004) Palladium-catalyzed C = N and C = O coupling—a practical guide from an industrial vantage point. Adv Synth Catal 346:1599–1626

    Article  CAS  Google Scholar 

  14. Blaser HU, Indolese A, Naud F, Nettekoven U, Schnyder A (2004) Industrial R&D on catalytic C = C and C = N coupling reactions: a personal account on goals, approaches and results. Adv Synth Catal 346:1583–1598

    Article  CAS  Google Scholar 

  15. Buchwald SL, Mauger C, Mignani G, Scholz U (2006) Industrial-scale palladium-catalyzed coupling of aryl halides and amines—a personal account. Adv Synth Catal 348:23–39

    Article  CAS  Google Scholar 

  16. Torborg C, Beller M (2009) Recent applications of palladium-catalyzed coupling reactions in the pharmaceutical, agrochemical, and fine chemical industries. Adv Synth Catal 351:3027–3043

    Article  CAS  Google Scholar 

  17. Ennis DS, McManus J, Wood-Kaczmar W, Richardson J, Smith GE, Carstairs A (1999) Multikilogram-scale synthesis of a biphenyl carboxylic acid derivative using a Pd/C-mediated Suzuki coupling approach. Org Process Res Dev 3:248–252

    Article  CAS  Google Scholar 

  18. Cameron M, Foster BS, Lynch JE, Shi Y, Dolling UH (2006) The expedient synthesis of 4,2′-difluoro-5′-(7-trifluoromethyl-imidazo[1,2-a]pyrimidin-3-yl)biphenyl-2-carbonitrile, a GABA α2/3 agonist. Org Process Res Dev 10:398–402

    Article  CAS  Google Scholar 

  19. Snieckus V (1990) Directed ortho metalation. Tertiary amide and o-carbamate directors in synthetic strategies for polysubstituted aromatics. Chem Rev 90:879–933

    Article  CAS  Google Scholar 

  20. Kalinin AV, Bower JF, Riebel P, Snieckus V (1999) The directed ortho metalation—Ullmann connection. A new Cu(I)-catalyzed variant for the synthesis of substituted diaryl ethers. J Org Chem 64:2986–2987

    Article  CAS  Google Scholar 

  21. Caron S, Massett SS, Bogle DE, Castaldi MJ, Braish TF (2001) An efficient and cost-effective synthesis of 2-phenyl-3-aminopyridine. Org Process Res Dev 5:254–256

    Article  CAS  Google Scholar 

  22. Jensen MS, Hoerrner RS, Li W, Nelson DP, Javadi GJ, Dormer PG, Cai D, Larsen RD (2005) Efficient synthesis of a GABAA α2,3-selective allosteric modulator via a sequential Pd-catalyzed cross-coupling approach. J Org Chem 70:6034–6039

    Article  CAS  Google Scholar 

  23. Tonogaki K, Soga K, Itami K, Yoshida J (2005) Versatile synthesis of 1,1- diaryl-1-alkenes using vinylboronate ester as a platform. Synlett, 1802–1804

    Google Scholar 

  24. Paunescu E, Matuszak N, Melnyk P (2007) Suzuki-Miyaura cross-coupling reaction as the key step for the synthesis of some new 4-aryl and alkyl substituted analogues of amodiaquine and amopyroquine. Tetrahedron 63:12791–12810

    Article  CAS  Google Scholar 

  25. Nishihara Y, Miyasaka M, Okamoto M, Takahashi H, Inoue E, Tanemura K, Takagi K (2007) Zirconocene-mediated highly regio- and stereoselective synthesis of multisubstituted olefins starting from 1-alkynylboronates. J Am Chem Soc 129:12634–12635

    Article  CAS  Google Scholar 

  26. Wehn PM, Harrington PE, Eksterowicz JE (2009) Facile synthesis of substituted 5-amino- and 3-amino-1,2,4-thiadiazoles from a common precursor. Org Lett 11:5666–5669

    Article  CAS  Google Scholar 

  27. Saadeh HA, Mosleh IM, El-Abadelah MM (2009) New synthesis and antiparasitic activity of model 5-aryl-1-methyl-4-nitroimidazoles. Molecules 14:2758–2767

    Google Scholar 

  28. Jiang X, Lee G, Villhauer EB, Prasad K, Prashad M (2010) A scalable synthesis of a 1,7-naphthyridine derivative, a PDE-4 inhibitor. Org Process Res Dev 14:883–889

    Article  CAS  Google Scholar 

  29. Kabri Y, Verhaeghe P, Gellis A, Vanelle P (2010) Regioselective Suzuki-Miyaura reaction: application to the microwave-promoted synthesis of 4,7-diarylquinazolines. Molecules 15:2949–2961

    Article  CAS  Google Scholar 

  30. Kumar MR, Park K, Lee S (2010) Synthesis of amido-N-imidazolium salts and their applications as ligands in Suzuki-Miyaura reactions: coupling of hetero-aromatic halides and the synthesis of milrinone and irbesartan. Adv Synth Catal 352:3255–3266

    Article  CAS  Google Scholar 

  31. Xie L, Cui J, Qian X, Xu Y, Liu J, Xu R (2011) 5-Non-amino aromatic substituted naphthalimides as potential antitumor agents: synthesis via Suzuki reaction, antiproliferative activity, and DNA-binding behavior. Bioorg Med Chem 19:961–967

    Article  CAS  Google Scholar 

  32. Schumacher RF, Rosário AR, Souza Ana.CG, Acker CI, Nogueira CW, Zeni G (2011) The potential antioxidant activity of 2,3-dihydroselenophene, a prototype drug of 4-aryl-2,3-dihydroselenophenes. Bioorg Med Chem 19:1418–1425

    Google Scholar 

  33. Urawa Y, Miyazawa M, Ozeki N, Ogura K (2003) A novel methodology for efficient removal of residual palladium from a product of the Suzuki—Miyaura coupling with polymer-supported ethylenediamine derivatives. Org Process Res Dev 7:191–195

    Article  CAS  Google Scholar 

  34. Keen SP, Cowden CJ, Bishop BC, Brands KMJ, Davies AJ, Dolling UH, Lieberman DR, Stewart GW (2005) Practical asymmetric synthesis of a non-peptidic αvβ3 antagonist. J Org Chem 70:1771–1779

    Article  CAS  Google Scholar 

  35. Allwein SP, McWilliams JC, Secord EA, Mowrey DR, Nelson TD, Kress MH (2006) Efficient synthesis of chiral phenethylamines: preparation, asymmetric hydrogenation, and mild deprotection of ene-trifluoroacetamides. Tetrahedron Lett 47:6409–6412

    Article  CAS  Google Scholar 

  36. Ager DJ, Anderson K, Oblinger E, Shi Y, VanderRoest J, (2007) An epoxidation approach to a chiral lactone: application of the Shi epoxidation. J Org Process Res Dev 11:44–51

    Google Scholar 

  37. Menzel K, Machrouhi F, Bodenstein M, Alorati A, Cowden C, Gibson AW, Bishop B, Ikemoto N, Nelson TD, Kress MH, Frantz DE (2009) Process development of a potent bradykinin 1 antagonist. Org Process Res Dev 13:519–524

    Article  CAS  Google Scholar 

  38. Whiting M, Harwood K, Hossner F, Turner PG, Wilkinson MC (2010) Selection and development of the manufacturing route for EP1 antagonist GSK269984B. Org Process Res Dev 14:820–831

    Article  CAS  Google Scholar 

  39. Lipton MF, Mauragis MA, Maloney MT, Veley MF, VanderBor DW, Newby JJ, Appell RB, Daugs ED (2003) The synthesis of OSU 6162: efficient, large-scale implementation of a Suzuki coupling. Org Process Res Dev 7:385–392

    Article  CAS  Google Scholar 

  40. Negishi E, King AO, Okukado N (1977) Selective carbon–carbon bond formation via transition metal catalysis. 3. A highly selective synthesis of unsymmetrical biaryls and diarylmethanes by the nickel- or palladium-catalyzed reaction of aryl- and benzylzinc derivatives with aryl halides. J Org Chem 42:1821–1823

    Article  CAS  Google Scholar 

  41. King AO, Okukado N, Negishi E (1977) Highly general stereo-, regio-, and chemo-selective synthesis of terminal and internal conjugated enynes by the Pd-catalysed reaction of alkynylzinc reagents with alkenyl halides. J Chem Soc Chem Commun, 683–684

    Google Scholar 

  42. Phapale VB, Cardenas DJ (2009) Nickel-catalysed Negishi cross-coupling reactions: scope and mechanisms. Chem Soc Rev 38:1598–1607

    Article  CAS  Google Scholar 

  43. Krasovskiy A, Malakhov V, Gavryushin A, Knochel P (2006) Efficient synthesis of functionalized organozinc compounds by the direct insertion of zinc into organic iodides and bromides. Angew Chem Int Ed 45:6040–6044

    Article  CAS  Google Scholar 

  44. Uchiyama M, Furuyama T, Kobayashi M, Matsumoto Y, Tanaka K (2006) Toward a protecting-group-free halogen metal exchange reaction: practical, chemoselective metalation of functionalized aromatic halides using dianion- type zincate, tBu4ZnLi2. J Am Chem Soc 128:8404–8405

    Article  CAS  Google Scholar 

  45. Furuyama T, Yonehara M, Arimoto S, Kobayashi M, Matsumoto Y, Uchiyama M (2008) Development of highly chemoselective bulky zincate complex, tBu4ZnLi2: design, structure, and practical applications in small-/macromolecular synthesis. Chem Eur J 14:10348–14356

    Article  CAS  Google Scholar 

  46. Ku Y, Grieme T, Raje P, Sharma P, Morton HE, Rozema M, King SA (2003) A practical and scaleable synthesis of A-224817.0, a novel nonsteroidal ligand for the glucocorticoid receptor. J Org Chem 68:3238–3240

    Article  CAS  Google Scholar 

  47. Scott RW, Neville SN, Urbina A, Camp D, Stankovic N (2006) Development of a scalable synthesis to VEGFR inhibitor AG-28262. Org Process Res Dev 10:296–303

    Article  CAS  Google Scholar 

  48. Dutheuil G, Paturel C, Lei X, Couve-Bonnaire S, Pannecoucke X (2006) First stereospecific synthesis of (E)- or (Z)-α-fluoroenones via a kinetically controlled Negishi coupling reaction. J Org Chem 71:4316–4319

    Article  CAS  Google Scholar 

  49. Liu Z, Xiang J (2006) A High yield and pilot-scale process for the preparation of adapalene. Org Process Res Dev 10:285–288

    Article  CAS  Google Scholar 

  50. Denni-Dischert D, Marterer W, Bänziger M, Yusuff N, Batt D, Ramsey T, Geng P, Michael W, Wang R, Taplin F Jr, Versace R, Cesarz D, Perez LB (2006) The Synthesis of a novel inhibitor of B-Raf kinase. Org Process Res Dev 10:70–77

    Article  CAS  Google Scholar 

  51. Pérez-Balado C, Willemsens A, Ormerod D, Aelterman W, Mertens N (2007) Development of a concise scaleable synthesis of 2-chloro-5-(pyridin-2-yl) pyrimidine via a Negishi cross-coupling. Org Process Res Dev 11:237–240

    Article  Google Scholar 

  52. Manolikakes G, Dong MZ, Mayr H, Li J, Knochel P (2009) Negishi cross-couplings compatible with unprotected amide functions. Chem Eur J 15:1324–1328

    Article  CAS  Google Scholar 

  53. Kwak Y, Kanter AD, Wang B, Liu Y (2009) Efficient and convenient preparation of 3-aryl-2,2-dimethylpropanoates via Negishi coupling. Chem Commun, 2145–2147

    Google Scholar 

  54. Kennedy-Smith JJ, Arora N, Billedeau JR, Fretland J, Hang J, Heilek GM, Harris SF, Hirschfeld D, Javanbakht H, Li Y, Liang W, Roetz R, Smith M, Su GP, Suh JM, Villaseňor AG, Wu J, Yasuda D, Klumpp K, Sweeney ZK (2010) Synthesis and biological activity of new pyridone diaryl ether non-nucleoside inhibitors of HIV-1 reverse transcriptase. Med Chem Commun 1:79–83

    Article  CAS  Google Scholar 

  55. Ragan JA, Raggon JW, Hill PD, Jones BP, McDermott RE, Munchhof MJ, Marx MA, Casavant JM, Cooper BA, Doty JL, Lu Y (2003) Cross-coupling methods for the large-scale preparation of an imidazole-thienopyridine: synthesis of [2-(3-methyl-3H-imidazol-4-yl)-b]pyridin-7-yl]-(2-methyl-1H-indol-5-yl)-amine. Org Process Res Dev 7:676–683

    Article  CAS  Google Scholar 

  56. Brændvang M, Bakken V, Gundersen L (2009) Synthesis, structure, and antimycobacterial activity of 6-[1(3H)-isobenzofuranylidenemethyl]purines and analogs. Bioorg Med Chem 17:6512–6516

    Article  Google Scholar 

  57. Okitsu T, Nakazawa D, Nakagawa K, Okano T, Wada A (2010) Synthesis and biological evaluation of 9Z-retinoic acid analogs having 2-substituted benzo[b]furan. Chem Pharm Bull 58:418–422

    Article  CAS  Google Scholar 

  58. Gao Y, Wang H, Mease RC, Pomper MG, Horti AG (2010) Improved syntheses of precursors for PET radioligands [18F]XTRA and [18F]AZAN. Tetrahedron Lett 51:5333–5335

    Article  CAS  Google Scholar 

  59. Fan X, Song Y, Long Y (2008) An efficient and practical synthesis of the HIV protease inhibitor atazanavir via a highly diastereoselective reduction approach. Org Process Res Dev 12:69–75

    Article  CAS  Google Scholar 

  60. Manley PW, Acemoglu M, Marterer W, Pachinger W (2003) Large-scale Negishi coupling as applied to the synthesis of PDE472, an inhibitor of phosphodiesterase type 4D. Org Process Res Dev 7:436–445

    Article  CAS  Google Scholar 

  61. Marzoni G, Varney MD (1997) An improved large-scale synthesis of benz[cd]indol-2(1H)-one and 5-methylbenz[cd]indol-2(1H)-one. Org Process Res Dev 1:81–84

    Article  CAS  Google Scholar 

  62. Königsberger K, Chen G, Wu R, Girgis MJ, Prasad K, Repic O, Blacklock TJ (2003) A practical synthesis of 6-[2-(2,5-dimethoxyphenyl)ethyl]-4-ethylquinazoline and the art of removing palladium from the products of Pd-catalyzed reactions. Org Process Res Dev 7:733–742

    Article  Google Scholar 

  63. Hartner FW, Hsiao Y, Eng KK, Rivera NR, Palucki M, Tan L, Yasuda N, Hughes DL, Weissman S, Zewge D, King T, Tschaen D, Volante RP (2004) Methods for the synthesis of 5,6,7,8-tetrahydro-1,8-naphthyridine fragments for αvβ 3 integrin antagonists. J Org Chem 69:8723–8730

    Article  CAS  Google Scholar 

  64. Ripin DHB, Bourassa DE, Brandt T, Castaldi MJ, Frost HN, Hawkins J, Johnson PJ, Massett SS, Neumann K, Phillips J, Raggon JW, Rose PR, Rutherford JL, Sitter B, Stewart AM III, Vetelino MG, Wei L (2005) Evaluation of kilogram-scale Sonogashira, Suzuki, and Heck coupling routes to oncology candidate CP-724,714. Org Process Res Dev 9:440–450

    Article  CAS  Google Scholar 

  65. Xia Y, Liu Y, Wan J, Wang M, Rocchi P, Qu F, Iovanna JL, Peng L (2009) Novel triazole ribonucleoside down-regulates heat shock protein 27 and induces potent anticancer activity on drug-resistant pancreatic cancer. J Med Chem 52:6083–6096

    Article  CAS  Google Scholar 

  66. Yu S, Haight A, Kotecki B, Wang L, Lukin K, Hill DR (2009) Synthesis of a TRPV1 receptor antagonist. J Org Chem 74:9539–9542

    Article  CAS  Google Scholar 

  67. Old DW, Wolfe JP, Buchwald SL (1998) A highly active catalyst for palladium-catalyzed cross-coupling reactions: Room-temperature Suzuki couplings and amination of unactivated aryl chlorides. J Am Chem Soc 120:9722–9723

    Article  CAS  Google Scholar 

  68. Berliner MA, Cordi EM, Dunetz JR, Price KE (2010) Sonogashira reactions with propyne: Facile synthesis of 4-hydroxy-2-methylbenzofurans from iodoresorcinols. Org Process Res Dev 14:180–187

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Nishihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jiao, J., Nishihara, Y. (2013). Pharmaceuticals. In: Nishihara, Y. (eds) Applied Cross-Coupling Reactions. Lecture Notes in Chemistry, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32368-3_4

Download citation

Publish with us

Policies and ethics